if am=n and an=m then prove am+n =0
Answers
Answered by
25
Correction in question :-
==> am + an =0
Or
a(m+n)=0
an= a+ (n-1)d ,i.e, m = a+(n - 1)d ----- Eq. 1
am = a+(m-1)d ,i.e, n = a+(m - 1)d ---- Eq. 2
Eq.1 - Eq 2
m-n = d(n-1) - d(m-1)
m-n = d [n-1-(m-1)]
m-n= d[n-1-m+1]
m-n= -d[m-n]
-d =1 i.e d=-1
Substituting in d Eq. 1 :
m = a + (n-1) (-1)
m = a + 1- n , so, a = m+n-1 {eq 3}
a(m+n) = a + (m + n - 1)d
a(m+n) = (m + n - 1) + (m + n - 1)(-1)
a(m+n) = (m+n-1)(1-1)
a(m+n)= (m+n-1) 0
a(m+n)=0
==> am + an =0
Or
a(m+n)=0
an= a+ (n-1)d ,i.e, m = a+(n - 1)d ----- Eq. 1
am = a+(m-1)d ,i.e, n = a+(m - 1)d ---- Eq. 2
Eq.1 - Eq 2
m-n = d(n-1) - d(m-1)
m-n = d [n-1-(m-1)]
m-n= d[n-1-m+1]
m-n= -d[m-n]
-d =1 i.e d=-1
Substituting in d Eq. 1 :
m = a + (n-1) (-1)
m = a + 1- n , so, a = m+n-1 {eq 3}
a(m+n) = a + (m + n - 1)d
a(m+n) = (m + n - 1) + (m + n - 1)(-1)
a(m+n) = (m+n-1)(1-1)
a(m+n)= (m+n-1) 0
a(m+n)=0
Similar questions