Math, asked by shwetabothra, 2 months ago

If & and ß case the zeroes of quadratic polynomiai 2x^2+5x + 7
Find a polynomial whose Zeroes are 2a+ 3B and 3a + 2B​

Answers

Answered by mathdude500
2

Given that

 \rm :\longmapsto\:\rm \:  \alpha  \: and \:  \beta  \: are \: zeroes \:  {2x}^{2} + 5x + 7

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  -  \: \dfrac{5}{2}  -  - (1)

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{7}{2}  -  -  - (2)

Now, we have to find a quadratic polynomial whose zeroes are

\rm :\longmapsto\:3 \alpha  + 2 \beta  \: and \: 2 \alpha  + 3 \beta

Consider,

Sum of zeroes,

\rm :\longmapsto\:3 \alpha  + 2 \beta  + 2 \alpha  + 3 \beta

 \rm \:  =  \:5  \alpha + 5  \beta

 \rm \:  =  \:5(  \alpha  + \beta )

 \rm \:  =  \:5 \times ( -  \dfrac{5}{2})

 \rm \:  =  \:-  \dfrac{25}{2}

Now,

Consider,

Product of zeroes

\rm :\longmapsto\:(3 \alpha  + 2 \beta)( 2 \alpha  + 3 \beta)

 \rm \:  =  \:  {6 \alpha }^{2} + 9 \alpha  \beta  + 4 \alpha  \beta  +  {6 \beta }^{2}

 \rm \:  =  \:  {6 \alpha }^{2} + 13 \alpha  \beta  +  {6 \beta }^{2}

 \rm \:  =  \:  {6 \alpha }^{2} + 12 \alpha  \beta  +  {6 \beta }^{2}   +  \alpha  \beta

 \rm \:  =  \:  6({\alpha }^{2} + 2 \alpha  \beta  +  {\beta }^{2})   +  \alpha  \beta

 \rm \:  =  \:  6({\alpha +  \beta ) }^{2}    +  \alpha  \beta

 \rm \:  =  \: 6 \times \dfrac{25}{4}  + \dfrac{7}{2}

 \rm \:  =  \: \dfrac{75}{2}  + \dfrac{7}{2}

 \rm \:  =  \: \dfrac{75 + 7}{2}

 \rm \:  =  \: \dfrac{82}{2}

 \rm \:  =  \: 41

Hence,

The required polynomial is given by,

 \rm  \: f(x) = k( {x}^{2} - (Sum \: of \: zeroes)x + Product \: of \: zeroes)

 \rm \:  f(x)=  \:  k \bigg({x}^{2} + \dfrac{25}{2}x + 41 \bigg) \: where \: k \ne \: 0

Similar questions