Math, asked by ashishgautamag0293, 9 months ago

if α & β are roots of 5x^2 - 6x + 3= 0 form a quadratic equation whose roots are α^3β ,αβ^3.​

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Quadratic\:eqn\to 625x^{2}-90x+81=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {5x}^{2}  - 6x + 3 = 0 \\  \\  \tt: \implies  \alpha  \: and \:  \beta  \: are \: zeroes \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Quadratic \: equation \: whose \: zeroes \:  { \alpha }^{3}  \beta  \: and \:  \alpha  { \beta }^{3}  =

• According to given quetion :

 \tt \circ \:  {5x}^{2} - 6x + 3 = 0 \\  \\  \tt \circ \: a = 5 \:  \:  \:  \:  \:  \: b =  - 6 \:  \:  \:  \:  \:  \:  c = 3   \\  \\ \bold{For \: sum \: of \: zeroes :} \\  \tt:  \implies  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \tt:  \implies  \alpha  +  \beta  = \frac{ - ( - 6)}{5}  \\  \\  \green{\tt:  \implies  \alpha  +  \beta  = \frac{6}{5} } \\  \\  \bold{For \: product \: of \: zeroes : } \\ \tt:  \implies  \alpha \beta  = \frac{c}{a}  \\  \\  \green{\tt:  \implies  \alpha  \beta  = \frac{3}{5} } \\  \\  \bold{For \: Quadratic \: equation : } \\  \tt:  \implies  {x}^{2}  - (sum \: of \: new \: zeroes)x + (product \: of \: new \: zeroes) \\  \\ \tt:  \implies  {x}^{2}  - ( { \alpha }^{3}  \beta  +  { \alpha  \beta }^{3} )x + ( { \alpha }^{3}  \beta  \times  { \alpha  \beta }^{3} ) = 0

 \tt:  \implies  {x}^{2}  - ( \alpha  \beta ( { \alpha }^{2} +   { \beta }^{2}  ))x +  { (\alpha  \beta) }^{4}  \\  \\ \tt:  \implies   {x}^{2}  - ( \alpha  \beta (( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta ))x + ( { \alpha  \beta) }^{4} = 0  \\  \\ \tt:  \implies   {x}^{2}  - ( \frac{3}{5} ( ( \frac{6}{5} )^{2}  - 2 \times  \frac{3}{5} ))x +  { (\frac{3}{5} )}^{4}  = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \frac{3}{5} ( \frac{36}{25}  -  \frac{6}{5} ))x +  \frac{81}{625}  = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \frac{3}{5} ( \frac{36 - 30}{25} ))x +  \frac{81}{625}  = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \frac{3}{5}  \times  \frac{6}{25} )x +  \frac{81}{625}  = 0 \\  \\ \tt:  \implies   {x}^{2}  -  (\frac{18}{125} )x +  \frac{81}{625}  = 0 \\  \\  \green{\tt:  \implies   {625x}^{2}  - 90x +81 = 0}

Answered by Anonymous
10

\bold\red{\underline{\underline{Answer:}}}

\bold{Quadratic \ equation \ with \ required \ roots \ is}

\bold{625x^{2}-90x+81=0.}

\bold\orange{Given:}

\bold{The \ given \ quadratic \ equation \ is}

\bold{=>5x^{2}-6x+3=0}

\bold{=>\alpha \ and \beta \ are \ roots \ of \ the}

\bold{equation.}

\bold\pink{To \ find:}

\bold{New \ quadratic \ equation \ with \ roots}

\bold{=>\alpha^{3}\beta \ and \alpha\beta^{3}}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ quadratic \ equation \ is}

\bold{=>5x^{2}-6x+3=0}

\bold{Here,a=5, \ b=-6, \ and \ c=3}

________________________________

\bold{Sum \ of \ roots=\frac{-b}{a}}

\bold{Product \ of \ roots=\frac{c}{a}}

\bold{\tt{\therefore{\alpha+\beta=\frac{6}{5}...(1)}}}

\bold{\tt{\therefore{\alpha\beta=\frac{3}{5}...(2)}}}

\bold{\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2(\alpha\beta)}

\bold{\alpha^{2}+\beta^{2}=(\frac{6}{5})^{2}-2(\frac{3}{5})}

\bold{...from \ (1) \ and \ (2)}

\bold{\alpha^{2}+\beta^{2}=\frac{36}{25}-\frac{6}{5}}

\bold{\tt{\therefore{\alpha^{2}+\beta^{2}=\frac{36-30}{25}}}}

\bold{\tt{\therefore{\alpha^{2}+\beta^{2}=\frac{6}{25}...(3)}}}

_____________________________________

\bold{Roots \ of \ new \ equation \ are}

\bold{\alpha^{3}\beta \ and \alpha\beta^{3}}

\bold{Let \ M \ and \ N \ be \ roots \ of \ new \ equation}

\bold{M+N=\alpha^{3}\beta+\alpha\beta^{3}}

\bold{\tt{\therefore{M+N=\alpha\beta(\alpha^{2}+\beta^{2})}}}

\bold{...from \ (3) \ and \ (2)}

\bold{M+N=\frac{3}{5}×\frac{6}{25}}

\bold{\tt{\therefore{M+N=\frac{18}{125}...(4)}}}

\bold{M×N=\alpha^{3}\beta×\alpha\beta^{3}}

\bold{\tt{\therefore{M×N=(\alpha\beta)^{4}}}}

\bold{M×N=(\frac{3}{5})^{4}}

\bold{\tt{\therefore{M×N=\frac{81}{625}...(5)}}}

___________________________________

\bold{Quadratic \ equation \ can \ be \ written \ as}

\bold{=>x^{2}-(Sum \ of \ roots)x+(Product \ of \ roots)=0}

\bold{=>x^{2}-(M+N)x+(M×N)=0}

\bold{From \ (4) \ and \ (5)}

\bold{=>x^{2}-\frac{18x}{125}+\frac{81}{625}=0}

\bold{Multiply \ equation \ by \ 625 \ throughout}

\bold{we \ get,}

\bold{=>625x^{2}-90x+81=0}

\bold\purple{\tt{\therefore{Quadratic \ equation \ with \ required \ roots \ is}}}

\bold\purple{625x^{2}-90x+81=0.}

Similar questions