If
α & ß are the zeroes of the
polynomial f(x)= 4x²-5x+1, find a
quadratic polynomial whose zeros are α²/β² and β²/α².
Answers
Answered by
0
a and b are zeroes of 4x^2 - 5x +1
a+ b= 5/4
ab = 1/4
( a^2+ b^2) = ( a+b)^2 - 2ab
=25/16 - 1/2
= 25 - 8)/16 = 17/16
Now a quadratic polynomial whose zeroes are a^2/b^2. and b^2/a^2
x^2 - ( a^2/b^2. + b^2/a^2) x + a^2/b^2. b^2/a^2
x^2 - ( a^4 + b^4)/a^2 b^2 )x+ 1
x^2 - ((a^2 + b^2)^2 - 2a^2b^2)/a^2b^2)x + 1
x^2 - ( (17/16)^2 - 2/16. )/ 1/16.)x + 1
x^2 - (16( 17/16)^2 + 16×2/16.)x + 1
x^2 - ( 17^2/16 + 1/2). x. +1
x^2 - ( 289/16. + 1/2) x +1
x^2 - ( 289 + 8)/16. x +1
x^2 - 297/16. x +1
Also its prpportional
16 x^2 - 297x +16
Similar questions