If α & β are the zeroes of the quadratic polynomial f(x) =x² -3x+2, then how do you find a quadratic polynomial whose zeroes are 1/ (2 α + β) and 1/ (α +2 β)?
Answers
Answered by
27
• According to given question :
Answered by
18
Answer :
Given quadratic polynomial : x² - 3x + 2.
Finding its zeroes -
Splliting the middle term :
⇒ x² - 3x + 2 = 0
⇒ x² - 1x - 2x + 2 = 0
⇒ x (x - 1) - 2 (x - 1) = 0
⇒ (x - 2) (x - 1) = 0
⇒ x - 2 = 0 and x - 1 = 0
Hence, x = 2 and 1.
So, the zeroes of the polynomial are alpha = 2 and beta = 1.
Now, Let us find the values of 1/(2 alpha + beta) and 1/(alpha + 2 beta).
⇒ 1/(2 alpha + beta)
⇒ 1/(2 × 2 + 1)
⇒ 1/(4 + 1)
⇒ 1/5
⇒ 1/(alpha + 2 beta)
⇒ 1/(2 + 2 × 1)
⇒ 1/(2 + 2)
⇒ 1/4
Sum of zeroes = 1/5 + 1/4
= (4 + 5)/20
= 9/20
Product of zeroes = 1/5 × 1/4
= 1/20
Now, Quadratic Equation = x² - (Sum)x + Product.
➸ x² - (9/20)x + 1/20
➸ 20x² - 9x + 1
Hence, Quadratic Equation = 20x² - 9x + 1.
Similar questions