Math, asked by Anonymous, 10 months ago

If α & β are the zeroes of the quadratic polynomial f(x) =x² -3x+2, then how do you find a quadratic polynomial whose zeroes are 1/ (2 α + β) and 1/ (α +2 β)?

Answers

Answered by BrainlyConqueror0901
27

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{New\:Quadratic\to 20x^{2}-9x+1=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies f(x) =  {x}^{2}   - 3x + 2 \\  \\  \tt:  \implies Zeroes \: of \: polyonmial =  \alpha  \: and \:  \beta  \\  \\  \tt: \implies New \: zeroes =  \frac{1}{2 \alpha  +  \beta }  \: and \:  \frac{1}{2 \beta  +  \alpha }   \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies New \: quadratic  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  {x}^{2}   - 3x + 2 = 0 \\  \\ \tt: \implies  {x}^{2}  - 2x - x  + 2 = 0 \\  \\ \tt: \implies x(x - 2) - 1(x - 2) = 0 \\  \\ \tt: \implies x = 2 \: and \: 1 \\  \\   \green{\tt:  \circ \:  \alpha  = 1 \:  \:  \:  \:  \:  \:  \beta  = 2} \\  \\  \bold{New \: zeroes : } \\   \green{\tt: \implies  \frac{1}{2 \alpha  +  \beta }  =  \frac{1}{4} } \\  \\   \green{\tt: \implies  \frac{1}{2 \beta  +  \alpha  }  =  \frac{1}{5}}  \\  \\  \bold{For \:New \: Quadratic : } \\ \tt: \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\  \tt: \implies  {x}^{2}  - ( \frac{1}{4}  +  \frac{1}{5} )x + ( \frac{1}{4}  \times  \frac{1}{5} ) = 0 \\  \\ \tt: \implies  {x}^{2} -  \frac{9}{20}x +  \frac{1}{20}  = 0 \\  \\  \green{\tt: \implies  {20x}^{2}  - 9x + 1 = 0}

Answered by Nereida
18

Answer :

Given quadratic polynomial : x² - 3x + 2.

Finding its zeroes -

Splliting the middle term :

⇒ x² - 3x + 2 = 0

⇒ x² - 1x - 2x + 2 = 0

⇒ x (x - 1) - 2 (x - 1) = 0

⇒ (x - 2) (x - 1) = 0

⇒ x - 2 = 0 and x - 1 = 0

Hence, x = 2 and 1.

So, the zeroes of the polynomial are alpha = 2 and beta = 1.

Now, Let us find the values of 1/(2 alpha + beta) and 1/(alpha + 2 beta).

⇒ 1/(2 alpha + beta)

⇒ 1/(2 × 2 + 1)

⇒ 1/(4 + 1)

⇒ 1/5

⇒ 1/(alpha + 2 beta)

⇒ 1/(2 + 2 × 1)

⇒ 1/(2 + 2)

⇒ 1/4

Sum of zeroes = 1/5 + 1/4

= (4 + 5)/20

= 9/20

Product of zeroes = 1/5 × 1/4

= 1/20

Now, Quadratic Equation = x² - (Sum)x + Product.

➸ x² - (9/20)x + 1/20

➸ 20x² - 9x + 1

Hence, Quadratic Equation = 20x² - 9x + 1.

Similar questions