Math, asked by ANUSHKAMANE53, 3 months ago

If α & β are the zeros of a polynomial p(x) = 3x2 -10x + 7 , find the value of α2 + β2.​

Answers

Answered by xSoyaibImtiazAhmedx
1

Answer:

Given,

  • α & β are the zeros of a polynomial p(x) = 3x²-10x + 7

To find :

  • α² + β²

Now,

α + β =  \frac{ - ( - 10)}{3}

 \implies \:  { \underline{\bold{α + β =  \frac{10}{3} }}}

And

{  \underline{ \bold{α β \:  =  \frac{7}{3} }}}

Now,

{ \underline{ \bold{α^{2} + β^{2}  =  {(α + β)}^{2}  - 2αβ}}}

Substituting the values we get,

α ^{2}  + β ^{2}  =  {( \frac{10}{3} )}^{2}  - 2 \times  \frac{7}{3}

 \implies \: α ^{2}  + β ^{2}  =   \frac{100}{9}  -  \frac{14}{3}

 \implies \: α ^{2}  + β ^{2}  =   \frac{100 - 42}{9}

 \implies \: \large { \boxed { \mathtt { \color{blue}{\bold{α ^{2}  + β ^{2}  =   \frac{58}{9} }}}}}

\Large{\colorbox{yellow}{\underline{\underline{♠Answer♠:—\:\: α² + β²\: = 58/9} }}}

Formula used :—

 \boxed {\bold{ {x}^{2}   +  {y}^{2}  =  {(x + y)}^{2}  - 2xy}}

Similar questions