Math, asked by niranjannayak277, 9 months ago

If α&β are the zeros of quadratic polynomial 4x^2 - 5x - 1 then find the value of α^4 + β^4

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{4}+\beta^{4}=\frac{5}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {4x}^{2}  - 5x - 1 = 0 \\  \\  \tt: \implies  \alpha  \: and \:  \beta  \: are \: the \: zeores  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  { \alpha }^{4}  +  { \beta }^{4}  = ?

• According to given question :

 \tt \circ \: 4 {x}^{2} - 5x - 1   \\  \\  \tt \circ \: a = 4 \\  \\   \tt\circ \:b =  - 5 \\  \\  \tt \circ \: c =  - 1 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ \tt:  \implies  x =  \frac{ - ( - 5) \pm \sqrt{( - 5)^{2} - 4 \times 4\times( - 1) } }{2 \times 4}  \\  \\ \tt:  \implies  x = \frac{5 \pm \sqrt{25 + 16} }{8}  \\  \\  \green{\tt:   \implies  x = \frac{5 \pm \sqrt{41} }{8} } \\  \\ \tt  \circ \:  \alpha  =  \frac{5 +  \sqrt{41} }{8}  \\  \\  \tt \circ \:  \beta  =  \frac{5 +  \sqrt{41} }{8}  \\  \\  \bold{For \: finding \: value : } \\  \tt:  \implies { \alpha }^{4}  +  { \beta }^{4}  \\  \\ \tt:  \implies (\frac{5 +  \sqrt{41} }{8})^{4}  +  (\frac{5 -  \sqrt{41} }{8} )^{4}  \\  \\ \tt:  \implies  \frac{5 + 4 \sqrt{41} }{8}  +  \frac{5 - 4 \sqrt{41} }{8}  \\  \\ \tt:  \implies \frac{5 + 4 \sqrt{41} + 5  - 4 \sqrt{41}  }{8}  \\  \\ \tt:  \implies \frac{10}{8}  \\  \\  \green{\tt:  \implies \frac{5}{4} } \\  \\   \green{\tt \therefore  { \alpha }^{4}  +  { \beta }^{4}  =  \frac{5}{4} }

Answered by Saby123
1

QUESTION :

If α&β are the zeros of quadratic polynomial 4x^2 - 5x - 1 then find the value of α^4 + β^4

SOLUTION :

 \begin{lgathered}\tt \circ \: f(x) = 4 {x}^{2} - 5x - 1 \\ \\ \tt \circ \: a = 4 \\ \\ \tt\circ \:b = - 5 \\ \\ \tt \circ \: c = - 1 \\ \\ \bold{As \: we \: know \: that} \\ \tt: \leadsto x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} \\ \\ \tt: \leadsto x = \dfrac{ - ( - 5) \pm \sqrt{( - 5)^{2} - 4 \times 4\times( - 1) } }{2 \times 4} \\ \\ \tt: \mapsto x = \dfrac{5 \pm \sqrt{25 + 16} }{8} \\ \\ \purple{\tt: \implies x = \frac{5 \pm \sqrt{41} }{8} } \\ \\ \tt \circ \: \alpha = \frac{5 + \sqrt{41} }{8} \\ \\ \tt \circ \: \beta = \dfrac{5 + \sqrt{41} }{8} \\ \\ \bold{For \: finding \: value : } \\ \tt: \implies { \alpha }^{4} + { \beta }^{4} \\ \\ \tt: \implies (\frac{5 + \sqrt{41} }{8})^{4} + (\frac{5 - \sqrt{41} }{8} )^{4} \\ \\ \tt: \implies \frac{5 + 4 \sqrt{41} }{8} + \frac{5 - 4 \sqrt{41} }{8} \\ \\ \tt: \implies \frac{5 + 4 \sqrt{41} + 5 - 4 \sqrt{41} }{8} \\ \\ \tt: \implies \frac{10}{8} \\ \\ \green{\tt: \implies \frac{5}{4} } \\ \\ \blue{\tt \therefore { \alpha }^{4} + { \beta }^{4} = \frac{5}{4} }\end{lgathered}

Similar questions