Math, asked by yadavmegha8826, 9 months ago

if α & β are the zeros of the quadratic polynomial p(x)= 3X²-6x+4,find the value of α\β+β+α+2(1/α+1/β)+3αβ​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{\alpha\;\&\;\beta\;are\;zeroes\;of\;P(x)=3x^2-6x+4}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}+2\left(\dfrac{1}{\alpha}+\dfrac{1}{\beta}\right)+3\,\alpha\beta}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;\;P(x)=3x^2-6x+4}

\mathsf{Sum\;of\;zeroes=\dfrac{-(-6)}{3}}

\implies\mathsf{\alpha+\beta=2}

\mathsf{Product\;of\;zeroes=\dfrac{4}{3}}

\implies\mathsf{\alpha\beta=\dfrac{4}{3}}

\mathsf{Now,}

\mathsf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}+2\left(\dfrac{1}{\alpha}+\dfrac{1}{\beta}\right)+3\,\alpha\beta}

\mathsf{=\dfrac{\alpha^2+\beta^2}{\alpha\beta}+2\left(\dfrac{\alpha+\beta}{\alpha\beta}\right)+3\,\alpha\beta}

\mathsf{=\dfrac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}+2\left(\dfrac{\alpha+\beta}{\alpha\beta}\right)+3\,\alpha\beta}

\mathsf{=\dfrac{(2)^2-2\left(\dfrac{4}{3}\right)}{\dfrac{4}{3}}+2\left(\dfrac{2}{\dfrac{4}{3}}\right)+3{\times}\dfrac{4}{3}}

\mathsf{=\dfrac{4-\dfrac{8}{3}}{\dfrac{4}{3}}+2\left(\dfrac{6}{4}\right)+4}

\mathsf{=\dfrac{\dfrac{12-8}{3}}{\dfrac{4}{3}}+\dfrac{6}{2}+4}

\mathsf{=\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}}+3+4}

\mathsf{=1+3+4}

\mathsf{=8}

\implies\boxed{\mathsf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}+2\left(\dfrac{1}{\alpha}+\dfrac{1}{\beta}\right)+3\,\alpha\beta=8}}

Similar questions