Math, asked by keerthanakr222, 8 months ago

if an=2n+3 nind s1,s2,s3

Answers

Answered by AaminAftab21
4

\bf\large\bold\green{\underline{\overline{HERE\: IS\: YOUR\: ANSWER}}}

\bf\bold\orange{\boxed{MARK\: AS \:BRAINLIEST}}

Attachments:
Answered by atahrv
28

Answer :

\large{\boxed{\bf{\star\:\:S_1\:=\:5\:,\:S_2\:=\:12\:and\:S_3\:=\:21.\:\:\star}}}

Correct Question :–

If \sf{a_n\:=\:2n\:+\:3} then find S₁ , S₂ , S₃ .

Explanation :

Given :–

  • \sf{a_n\:=\:2n\:+\:3}

To Find :–

  • Values of S₁ , S₂ and S₃

Formula Applied :–

  • \boxed{\bf{\star\:\:S_n\:=\:\dfrac{n}{2} [2a\:+\:(n\:-\:1)d\:\:\star]}}
  • \boxed{\bf{\star\:\:a_n\:=\:a\:+\:(n\:-\:1)d\:\:\star}}
  • \boxed{\bf{\star\:\:d \:= \:a_{n+1}\:0-\:a_{n}\:\:\star}}

Solution :–

We have, aₙ = 2n + 3.

When putting n = 1, we get :

a₁ = 2(1) +3

a = 2 + 3

a = 5

When putting n = 2 , we get :

a₂ = 2(2) + 3

a₂ = 4 + 3

a₂ = 7

Now , we will find common difference (d) :

d = a₍₁₊₁₎ - a₁

d = a₂ - a₁

d = 7 - 5

d = 2

1. We have to find S₁ :

\sf{S_1\:=\:\dfrac{1}{2}\:[2(5)\:+\:(1\:-\:1)(2) ]}

\sf{S_1\:=\:\dfrac{1}{2}\:[10\:+\:(0\:\times\:2)] }

\sf{S_1\:=\:\dfrac{1}{2}\:\times\:10 }

\boxed{\sf{S_1\:=\:5 }}

2. We have to find S₂ :

\sf{S_2\:=\:\dfrac{2}{2}\:[2(5)\:+\:(2\:-\:1)(2)] }

\sf{S_2\:=\:[10\:+\:(1\:\times\:2) ]}

\sf{S_2\:=\:10\:+\:2}

\boxed{\sf{S_2\:=\:12}}

3. We have to find S₃ :

\sf{S_3\:=\:\dfrac{3}{2}\:[2(5)\:+\:(3\:-\:1)(2)] }

\sf{S_3\:=\:\dfrac{3}{2}\:[10\:+\:(2\:\times\:2)] }

\sf{S_3\:=\:\dfrac{3}{2}\:(10\:+\:4) }

\sf{S_3\:=\:\dfrac{3}{2}\:\times\:14 }

\sf{S_3\:=\:3\:\times\:7 }

\boxed{\sf{S_3\:=\:21 }}

∴ The values of S₁ , S₂ and S₃ are 5 , 12 and 21 Respectively.

Similar questions