Math, asked by aparnachakrabarti22, 10 months ago

If an acute angle of a right triangle is 15° and hypotenuse is x cm then find the area of the right triangle.​

Attachments:

Answers

Answered by Anonymous
75

Your Answer:

Given:-

  • angle B = 15°
  • angle C = 90°
  • AB = x units

To find:-

  • Area of Triangle

Solution:-

\tt \cos B = \dfrac{BC}{AB} \\\\ \tt \Rightarrow \cos {15}^{o}= \dfrac{BC}{x}  \\\\ \tt \Rightarrow \dfrac{\sqrt{3}+1}{2\sqrt2} =\dfrac{BC}{x} \\\\ \tt \Rightarrow (\dfrac{\sqrt{3}+1}{2\sqrt2})x= BC

and

\tt \sin A = \dfrac{AC}{AB} \\\\ \tt \Rightarrow \sin {15}^{o}= \dfrac{AC}{x}  \\\\ \tt \Rightarrow \dfrac{\sqrt{3}-1}{2\sqrt2} =\dfrac{AC}{x} \\\\ \tt \Rightarrow (\dfrac{\sqrt{3}-1}{2\sqrt2})x = AC

Now area of triangle =

\tt \dfrac{1}{2}\times base \times height \\\\ \tt = \dfrac{1}{2}\times BC \times AC \\\\ \tt = \dfrac{1}{2} \times (\dfrac{\sqrt3 + 1}{2\sqrt2})x \times  (\dfrac{\sqrt3-1}{2\sqrt2})x \\\\ \tt =\dfrac{1}{2} \times \dfrac{(3-1)}{8} x^2 \rightarrow \rightarrow [\because (a+b)(a-b)=a^2-b^2]\\\\ \tt = \dfrac{1}{8}x^2

So, area of triangle = (1/8)x^2

Attachments:
Answered by Uriyella
46

Question :–

If an acute angle of a right triangle is 15° and hypotenuse is x cm then find the area of the right triangle.

Given :–

  • ∠B = 15°
  • ∠C = 90°
  • AB (Hypotenuse) = x

To Find :–

  • Area of triangle.

Solution :–

First we need to find base (BC) & height (AC).

So,

1. Base (BC) :–

 → \cos(b)  =  \frac{BC}{AB}

★ b = 15° ★

★ AB = x ★

  cos \: 15 \degree =  \frac{BC}{x}

  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }  =  \frac{BC}{x}

  ( \frac{ \sqrt{3} + 1 }{2 \sqrt{2} } )x = BC

  \boxed{ \sf \blue{ BC = \dfrac{\sqrt{3} + 1}{2 \sqrt{2}}}}

2. Height (AC) :–

  \sin(a)  =  \frac{AC}{AB}

★ a = 15° ★

★ AB = x ★

  \sin \: 15 \degree =  \frac{AC}{x}

  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} }  =  \frac{AC}{x}

  ( \frac{ \sqrt{3} - 1 }{2 \sqrt{2} } )x = AC

  \boxed{ \sf \blue{ AB = \dfrac{\sqrt{3} - 1}{2 \sqrt{2}}}}

Now,

Area of triangle →   \frac{1}{2} \times base \times height

Now, put the value of base (BC) & height (AC) on the formula of triangle.

 \frac{1}{2}  \times BC \times AC

  \frac{1}{2}  \times  (\frac{ \sqrt{3}  +  1 }{2 \sqrt{2} } )x \times  (\frac{ \sqrt{3} - 1 }{2 \sqrt{2} } )x

[(a + b)(a - b) =  \sf {a}^{2} - {b}^{2} ]

  \frac{1}{2}  \times\frac{ (\sqrt{3}  -  1 )}{8}  {x}^{2}

 \frac{1}{8}  {x}^{2}

Hence, the area of the triangle is  \boxed {\sf \red{\frac{1}{8} {x}^{2}}}

Attachments:

Anonymous: Splendid :)
Similar questions