If an angle of a parallelogram is seven - eleventh of its adjacent angle, the smallest angle of the parallelogram is
Answers
Answer:
Answer:
Answer:
\rm \: in \: this \: figureinthisfigure
\begin{gathered} \sf{ \angle(4x + 60) \degree \: and \: \angle (x + 20) \degree} \sf \: are \: in \: \\ \sf \: liner \: pair\end{gathered}∠(4x+60)°and∠(x+20)°areinlinerpair
\begin{gathered} \sf \therefore (4x + 60) + (x + 20) = 180 \\ \end{gathered}∴(4x+60)+(x+20)=180
\rm \: Reason - \green{\boxed{ \sf \: angles \: in \: linear \: pair \: are \: supplementry}}Reason−anglesinlinearpairaresupplementry
\begin{gathered} \sf \implies \: 5x + 80 = 180 \\ \end{gathered}⟹5x+80=180
\begin{gathered} \sf \implies \: 5x = 180 - 80\\ \end{gathered}⟹5x=180−80
\begin{gathered} \sf \implies \: 5x = 100\\ \end{gathered}⟹5x=100
\begin{gathered} \sf \implies \: x = \frac { \cancel{100}}{ \cancel{5}}\\ \end{gathered}⟹x=5100
\begin{gathered} \sf \implies \underline{\boxed{x = 20}}\\ \end{gathered}⟹x=20
plz mark as brainliest answer