Math, asked by yurwish, 7 months ago

If an angle of a parallelogram is seven - eleventh of its adjacent angle, the smallest angle of the parallelogram is​

Answers

Answered by King412
77

Answer:

 \rm \: in \: this \: figure

  \sf{ \angle(4x + 60) \degree \: and \:  \angle (x + 20) \degree} \sf \: are \: in \: \\  \sf \: liner \: pair

 \sf \therefore (4x + 60) + (x + 20) = 180 \\

 \rm \: Reason - \green{\boxed{ \sf \: angles \: in \: linear \: pair \: are \: supplementry}}

 \sf \implies \: 5x + 80 = 180 \\

 \sf \implies \: 5x  = 180  - 80\\

 \sf \implies \: 5x  = 100\\

 \sf \implies \: x  =  \frac {  \cancel{100}}{ \cancel{5}}\\

 \sf \implies  \underline{\boxed{x  =  20}}\\

Answered by goelmayu
0

Answer:

Answer:

\rm \: in \: this \: figureinthisfigure

\begin{gathered} \sf{ \angle(4x + 60) \degree \: and \: \angle (x + 20) \degree} \sf \: are \: in \: \\ \sf \: liner \: pair\end{gathered}∠(4x+60)°and∠(x+20)°areinlinerpair

\begin{gathered} \sf \therefore (4x + 60) + (x + 20) = 180 \\ \end{gathered}∴(4x+60)+(x+20)=180

\rm \: Reason - \green{\boxed{ \sf \: angles \: in \: linear \: pair \: are \: supplementry}}Reason−anglesinlinearpairaresupplementry

\begin{gathered} \sf \implies \: 5x + 80 = 180 \\ \end{gathered}⟹5x+80=180

\begin{gathered} \sf \implies \: 5x = 180 - 80\\ \end{gathered}⟹5x=180−80

\begin{gathered} \sf \implies \: 5x = 100\\ \end{gathered}⟹5x=100

\begin{gathered} \sf \implies \: x = \frac { \cancel{100}}{ \cancel{5}}\\ \end{gathered}⟹x=5100

\begin{gathered} \sf \implies \underline{\boxed{x = 20}}\\ \end{gathered}⟹x=20

plz mark as brainliest answer

Similar questions