IF AN ANGLE TAN THETA =1/ROOT7 FIND THE VALUE OF COSEC² THETA –SEC² THETA /COSEC² THETA +SEC ² THETA
Answers
Answer:
GIVEN
TAN Θ =1/√7
TAN Θ=AB/AC
AB=1K
BC= √7 K
COT C Θ = AC/AB = 2√2
COSEC² Θ –SEC² Θ / COT² Θ +SEC ² Θ
( √7) ²
( AC)² =(AB)²+( BC)²
=(1K)²+(√7K)²
1K²+7K²
8K²
=2√2
GIVEN =TAN Θ = 1/
TAN Θ = AB/AC
AB=1K
BC = √7 K
COSEC Θ =AC/AB =2√2
SEC Θ =AC/BC =2√2 / 7
COSEC² Θ –SEC² Θ / COT² Θ +SEC ² Θ
4(2)_4(2)/7
=8+8/7
4(2)+ 4(2)/7
= 3/4
Given :-
To find :-
Solution :-
Therefore , Tan theta = opposite side/adjacent side
tan theta=1/root 7
Therefore,
Opposite side=1 and Adjacent side= root 7
By Pythogoras theorem
Hypotenuse^2=Adjacent^2+Opposite^2
Hypotenuse^2 = root 7^2 + 1^2
Hypotenuse^2 = 7+1
Hypotenuse = root 8
Sin theta = Opposite/ Hypotenuse
Sin theta = 1/root 8
Therefore,
cosec theta = root 8/1
cos theta = Adjacent/Hypotenuse
Cos theta = root 7/root 8
Therfore,
sec theta = root 8/ root 7
Now ,
Cosec^2 theta - Sec^2 theta / Cosec^2 theta + Sec^2 theta
Root 8^2/1^2 - Root8^2/root 7^2 / root 8^2/1^2 + root8^2/root 7^2
8/1-8/7 / 8/1+8/7
56-8/7 /56+8/7
48/7 / 64/7
48/7 *7/64
48/64
= 3/4
The answer is 3/4