Math, asked by shirodkarbhalc6, 2 months ago

if an AP an=3n+2 fir d the sun of first 20 term? ​

Answers

Answered by Anonymous
28

Answer:

{ \huge{ \underline{ \pmb{ \sf{ \red{Required  \: Answer:}}}}}}

In question they given that, an = 3n + 2

For Finding Sum of first 20 terms, we want a value and d value

Let's find a, d values:

 :  \:  \to{ \sf{ a_{n} = 3n + 2 }} \\  \\ :  \:  \to{ \sf{ a_{1} = 3(1)+ 2 }} \\  \\ :  \:  \to{ \sf{ a_{1} = 3 + 2 }} \\  \\ :  \:  \to{ \sf{ a_{1} = 5}}

So, The first term in AP = 5

 \: :  \:  \to{ \sf{ a_{n} = 3n + 2 }} \\  \\ :  \:  \to{ \sf{ a_{2} = 3(2) + 2 }} \\  \\ :  \:  \to{ \sf{ a_{2} = 6 + 2 }} \\  \\ :  \:  \to{ \sf{ a_{2} = 8}}

So, The second term = 8

Let's find common difference:

{ \sf{Common \:  Difference =  a_{2} - a}} \\  \\ { \sf{Common \:  Difference =  8 - 5}} \\  \\ { \sf{Common \:  Difference =  3}}

So, The common difference = 3

Let's Find sum of 1st 20 terms:

 : { \implies{ \sf{  s_{n} =  \frac{n}{2}   (2a + (n - 1)d)}}} \\  \\  : { \implies{ \sf{  s_{20} =  \frac{20}{2}  \bigg[2(5) + (20 - 1)(3) \bigg]}}} \\  \\ : { \implies{ \sf{  s_{20} = 10\bigg[10 + 19(3)\bigg]}}} \\  \\ : { \implies{ \sf{  s_{20} = 10\bigg[10 + 57 \bigg]}}} \\  \\ : { \implies{ \sf{  s_{20} = 10(67 )}}} \\  \\ : { \implies{ \sf{  s_{20} =670}}}

Therefore,

  • Sum of first 20 terms = 670

Similar questions