Math, asked by sfarmer, 9 months ago

if an arc has a measure of 97 degrees, and the circle has radius=10, what is the arc length

Answers

Answered by MaheswariS
0

\textbf{Formula used:}

\boxed{\text{Arc length of sector=}\frac{\theta}{360^{\circ}}{\times}2\pi\,r\;\text{units}}

\textbf{Given: }

\text{Central angle, $\theta=97^{\circ}$}

\text{Radius, r=10 cm}

\text{Now,}

\text{Arc length of the sector}

=\frac{\theta}{360^{\circ}}{\times}2\pi\,r

=\frac{97^{\circ}}{360^{\circ}}{\times}2{\times}\frac{22}{7}{\times}10

=\frac{97^{\circ}}{36^{\circ}}{\times}2{\times}\frac{22}{7}

=\frac{97^{\circ}}{18^{\circ}}{\times}\frac{22}{7}

=\frac{97^{\circ}}{9^{\circ}}{\times}\frac{11}{7}

=\frac{1067}{63}

=16.94\;\text{units}

\therefore\textbf{Arc length is 16.94 units}

Similar questions