Math, asked by singhveera3293, 1 month ago

If an ellipse passing through (3,1)having foci(+-4,0)find 1.the length of the major axis

Answers

Answered by senboni123456
3

Step-by-step explanation:

Let the equation of ellipse be \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\

It passes through (3,1), so,

 \frac{9}{a^{2} }   +  \frac{1}{ {b}^{2} }  = 1\\

 \implies 9 {b}^{2}   +  {a}^{2}   =  {a}^{2} {b}^{2}  \:  \:  \: ....(i) \\

Focus \equiv(\pm4,0)

So,

ae = 4 \\

 \implies \: a^{2} e^{2}  = 16 \\

 \implies \: a^{2} \bigg( 1 -  \frac{ {b}^{2} }{ {a}^{2} }  \bigg) = 16 \\

 \implies \: a^{2}  -  {b}^{2}  = 16 \\

 \implies \:    {b}^{2}  =  a^{2} -  16 \\

Put this value in (i),

 \implies 9 ({a}^{2} - 16)   +  {a}^{2}   =  {a}^{2}( {a}^{2} - 16)  \:  \:  \: \\

 \implies 9{a}^{2} - 144   +  {a}^{2}   =  {a}^{4} - 16 {a}^{2}   \:  \:  \:\\

 \implies 10{a}^{2} - 144     =  {a}^{4} - 16 {a}^{2}   \:  \:  \:\\

 \implies  {a}^{4} - 26 {a}^{2}   + 144 = 0 \:  \:  \:\\

 \implies  {a}^{2}  =  \frac{26 \pm \sqrt{676 -576} }{2}  \:  \:  \:\\

 \implies  {a}^{2}  =  \frac{26 \pm \sqrt{100} }{2}  \:  \:  \:\\

 \implies  {a}^{2}  =  \frac{26 \pm 10}{2}  \:  \:  \:\\

 \implies  {a}^{2}  =  \frac{26  +  10}{2}   \:  \:  \:or \:  \:  \:  {a}^{2}  = \frac{26 - 10}{2}  \\

 \implies  {a}^{2}  =    18   \:  \:  \:or \:  \:  \:  {a}^{2}  = 8 \\

 \implies  a  =    \pm 3 \sqrt{2}    \:  \:  \:or \:  \:  \:  {a}  =  \pm2 \sqrt{2}  \\

Taking only positive value,

 \implies  a  =    3 \sqrt{2}    \:  \:  \:or \:  \:  \:  a =  2 \sqrt{2}  \\

If  a=2\sqrt{2} then, put it in (i),

we get,

 \implies 9 {b}^{2}   +  {(2 \sqrt{2}) }^{2}   =  {(2 \sqrt{2}) }^{2} {b}^{2}  \:  \:  \:  \\

 \implies 9 {b}^{2}   +  8   =  8 {b}^{2}  \:  \:  \:  \\

 \implies {b}^{2}   +  8   = 0  \:  \:  \:  \\

 \implies {b}^{2}    =  -   8    \:  \:  \:  \\

Which is not possible,

So,

 \tt{ \bold{ Length \:  \: of \:  \: major \:  \: axis = 3 \sqrt{2}  }}

Similar questions