Math, asked by sharmaanchal619, 5 months ago

) If an integer is simultaneously a square and a cube,
prove that it is either of the form 7k or 7k +1. ​

Answers

Answered by shadowsabers03
8

If an integer is simultaneously a square and a cube, it will be sixth power of some integer and so it can be written in the form \displaystyle\mathsf {a^6\ \forall a\in}\mathbb{Z}.

Let,

\displaystyle\sf{\longrightarrow a=7q+r}

so that \displaystyle\sf {a\equiv r\pmod{7}} assuming \displaystyle\sf {0\leq r<7.}

Then we get,

\displaystyle\sf{\longrightarrow a^6\equiv r^6\pmod7}

but \displaystyle\sf {r^6} should not be \displaystyle\sf {0\leq r^6<7} for every \displaystyle\sf {0\leq r<7.}

We need to find possible values of \displaystyle\sf {m} for \displaystyle\sf {0\leq m<7} such that \displaystyle\sf{r^6\equiv m\pmod7.}

We need to put values for \displaystyle\sf {r} ranging from 0 to 6 and to check.

Let \displaystyle\sf {r=0.} Then,

\displaystyle\mathsf{\longrightarrow r^6=0^6=0\equiv}\ \mathbf{0}\ \mathsf{\pmod7}

Let \displaystyle\sf {r=1.} Then,

\displaystyle\mathsf{\longrightarrow r^6=1^6=1\equiv}\ \mathbf{1}\ \mathsf{\pmod7}

Let \displaystyle\sf {r=2.} Then,

\displaystyle\mathsf{\longrightarrow r^6=2^6=64\equiv}\ \mathbf{1}\ \mathsf{\pmod7\quad\quad\dots(1)}

Let \displaystyle\sf {r=3.} Then,

\displaystyle\mathsf{\longrightarrow r^6=3^6=729\equiv}\ \mathbf{1}\ \mathsf{\pmod7\quad\quad\dots(2)}

Let \displaystyle\sf {r=4.} Then,

\displaystyle\sf{\longrightarrow r^6=4^6=(2^2)^6=(2^6)^2}

Using (1),

\displaystyle\mathsf{\longrightarrow r^6=(2^6)^2\equiv1^2=}\ \mathbf{1}\ \mathsf{\pmod7}

Let \displaystyle\sf {r=5.} Then,

\displaystyle\sf{\longrightarrow r^6=5^6=(5^3)^2}

Since we can see \displaystyle\sf {5^3=125\equiv-1\pmod7,}

\displaystyle\mathsf{\longrightarrow r^6=(5^3)^2\equiv(-1)^2=}\ \mathbf{1}\ \mathsf{\pmod7}

Let \displaystyle\sf {r=6.} Then,

\displaystyle\sf{\longrightarrow r^6=6^6=(2\times 3)^6=2^6\times 3^6}

Using (1) and (2),

\displaystyle\mathsf{\longrightarrow r^6=2^6\times 3^6\equiv1\times1=}\ \mathbf{1}\ \mathsf{\pmod7}

From each case we get,

\displaystyle\sf{\longrightarrow m\in\{0,\ 1\}}

so that \displaystyle\sf {a^6} can only be written in the form \displaystyle\sf{7k} or \displaystyle\sf {7k+1} for every \displaystyle\sf {a\in\mathbb{Z}} and for some \displaystyle\sf {k\in\mathbb{Z}.}

Hence Proved!

Answered by vinshultyagi
18

Explanation:-

\:

If n is both a square and a cube, it is a perfect 6-th power.

Let z be a number. Then z has shape 7k, or 7k+1, or 7k+2, and so on up to 7k+6.

Then z^6 has shape (respectively) 7k, 7k+1, 7k+1, 7k+1, 7k+1, 7k+1, and 7k+1.

To do the calculations, let us take the example z of the shape 7k+2.

Imagine expanding (7k+2)^6 using the Binomial Theorem. The first 6 terms are obviously divisible by 7, and the last term is 2^6=64. This has remainder 1 on division by 7. So (7k+2)^6 has remainder 1 on division by 7, and therefore has shape 7t+1.

The other calculations are very similar.

Similar questions