Math, asked by Kingmanishkumar2350, 1 year ago

If an isosceles triangle ABC in which AB = AC = 6 cm is inscribed in a circle of radius 9 cm, find the area of the triangle.

Answers

Answered by leninviki
18
circumcentre of triangle=9
area =abc /4R
area=x
x=6*6*c/4*9
x=c=base
area of triangle=1/2*base*h----(1)

h^2+(b/2)^2=6^2
h^2=36-(b^2/4)
h^2=(144-b^2)/4
h=√(144-b^2)/2------(2)
(2)in (1)
c=c/4*√(144-b^2)
4=√(144-b^2)
16=144-b^2
b^2=128
b=8√2
area=b=8√2
Answered by mindfulmaisel
5

The area of the triangle is half as big as the rectangle. So the area of triangle is half of the area of the rectangle.

Given:

AB\quad =\quad AC\quad =\quad 6 \ cm

Radius of circle = 9 cm

To find:

The “Area of the triangle”

Answer:

Let AP = x and OP = 9 - x

OA\quad =\quad AP+OP

=\quad x+9-x

OA\quad =\quad 9

OB\quad =\quad 9

AB\quad =\quad 6

\Delta ABP

{ BP }^{ 2 }={ AB }^{ 2 }-{ AP }^{ 2 }

In \ \Delta OBP,

{ BP }^{ 2 }={ OB }^{ 2 }-{ OP }^{ 2 }

Compare both sides

{ AB }^{ 2 }-{ AP }^{ 2 }={ OB }^{ 2 }-{ OP }^{ 2 }

6^{ 2 }-{ x }^{ 2 }=9^{ 2 }-\left( 9-{ x }^{ 2 } \right)

6^{2}-\mathrm{x}^{2}=9^{2}-\left(81+\mathrm{x}^{2}-18 \mathrm{x}\right)

6^{ 2 }-{ x }^{ 2 }=81-81-{ x }^{ 2 }+18x

36 = 18x

x = 2

Area of triangle APC is

{ CP }=\sqrt { { AC }^{ 2 }-{ AP }^{ 2 } }

=\sqrt { 36-4 } =\sqrt { 32 }

=\frac { 1 }{ 2 } \times \quad base\quad \times \quad height

Area of triangle ABC is twice the area of triangle APC.

A=2 \sqrt{32}

Attachments:
Similar questions