Physics, asked by Aryann3758, 1 year ago

If an object completed 49 revolution in a minute around a circular path with speed 7 ms find radius

Answers

Answered by vijeshmdt
58
circumference of the circular path is 2πr where r is the radius.
speed \:  \: s =  \frac{d}{t} \\ d = 49 \times 2\pi \: r \\ t = 60s \\  s = 7m {s}^{ - 1}  \\ ie. \: 7 =  \frac{49 \times 2 \times  \frac{22}{7} \times r }{60}  \\ r =  \frac{7 \times 60 \times 7}{49 \times 2 \times 22}  \\  =  \frac{15}{11} m
ie. 1.36 m
Answered by SerenaBochenek
26

The correct answer to the question is 1.364 m.

CALCULATION:

As per the question, the object is taking 49 revolutions per minute.

Hence, the number of rotations taken by the object in one second = \frac{49}{60}

The number of rotations made by a body per second is known as the frequency of the body.

Hence, the frequency of the body f = \frac{49}{60}\ sec^{-1} .

The angular velocity of the body \omega=\ 2\pi f

                                                             =\ 2\pi \times \frac{49}{60}\ rad/sec.

                                                             =\ 5.13\ rad/sec.

The velocity of the body v =  7 m/s.

We know that linear velocity v = \omega r

                                          ⇒    r=\ \frac{v}{\omega}

                                                    =\ \frac{7}{5.13}\ m

                                                    =\ 1.364\ m     [ans]

Similar questions