Physics, asked by vegisravan4547, 6 months ago

If an object is thrown at an angle 60°with respect to the horizontal with velocity 80m/sec. find time of flight.find horizontal range g=10m/sec^​

Answers

Answered by Anonymous
5

Solution:-

Range R . This is also equal to the displacement of the particles alnog x - axis in the t = T Thus applying

 \rm \: S = u_{x} t +  \dfrac{1}{2} a_{x} {t}^{2}

We get

 \rm \: R = (u \cos \alpha) \bigg( \dfrac{2u \sin\alpha }{g}  \bigg) + 0

as

 \rm \: a_{x} = 0 \:  \: and \:  \: t = T =  \dfrac{2u \sin \alpha }{g}

 \rm \: R =  \dfrac{2 {u}^{2}  \sin \alpha \cos \alpha }{g}  =  \dfrac{ {u^{2}  \sin2 \alpha}}{g}

  \boxed{\rm \: R \:  =  \dfrac{ {u^{2}  \sin2 \alpha}}{g} }

Given

 \rm \: u = 80m {s}^{ - 1}

 \rm \: angle( \alpha) = 60 \degree

 \rm \: g \:  = 10ms {}^{ - 2}

To find

 \rm \: horizontal \: range(R)

Putting the value on formula

 \rm \:  \to \: R =  \dfrac{80 \times 80 \times  \sin(2 \times 60) }{10}

 \to \rm \: R =  \dfrac{6400 \times  \dfrac{ \sqrt{3} }{2} }{10}

 \to \rm \: R =  \dfrac{3200 \times  \sqrt{3} }{10}

 \rm \to \:  R = 320 \times 1.732

 \rm \to \: R = 554.24 \: m

So horizontal range is 554 . 24 m

ii) Time of flight

=> Here x and y axis are in the direction shown in figure. axis x is along horizontal direction and axis y is vertical upward. Thus

 \rm \: u_{x} = u \cos \alpha

 \rm \: u _{y } = u \sin \alpha  \:  \sf{and} \:  \rm \: a _{x} = 0

 \rm \: a _{y} =  - g

At point B , Sy = 0 . so applying

 \rm \:  s_{y} = u_{y}t +  \dfrac{1}{2} a _{y} {t}^{2}

We have

  \rm \:  0 = (u \sin \alpha )t -  \dfrac{1}{2} g {t}^{2}

 \rm \: t = 0 \:  \: and \:   \: \dfrac{2u \sin \alpha  }{g}

So

 \boxed{ \rm \: T =  \dfrac{2u \sin \alpha }{g} }

putting the value on formula

 \rm \: T =  \dfrac{2 \times 80 \times  \sin60 \degree }{10}

 \rm \: T =  {16 \times  \dfrac{ \sqrt{3} }{2} }{}

 \rm \: T = 8 \sqrt{3}  \:  \: s

 \rm \: T = 8 \times 1.732

 \rm \: T = 13.86 \:  \: s

So time of flight 13.86 s

Attachments:
Answered by niha123448
0

Explanation:

Range R . This is also equal to the displacement of the particles alnog x - axis in the t = T Thus applying

Step-by-step explanation:

ANSWER ✍️

Given

⇒Tanθ = 20/21

To Find

⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)

First of all We have to find Sinθ and Cosθ

So take

⇒Tanθ = 20/21 = Perpendicular(p)/Base(b)

We get

⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = h

Using Pythagoras theorem

⇒h² = p² + b²

⇒h² = (20)² + (21)²

⇒h² = 400 + 441

⇒h² = 841

⇒h = √(841)

⇒h = 29

We get

⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = 29

Then

⇒Sinθ = P/h and Cosθ = b/h

⇒Sinθ = 20/29 and Cosθ  = 21/29

Now Put the value on

⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)

⇒(1-20/29 + 21/29)/(1+20/29 + 21/29)

⇒{(29-20+21)/29}/{29+20+21)/29}

⇒{(50 - 20)/29}/{(50+20)/29}

⇒(30/29)/(70/29)

⇒30/29 ×29/70

⇒30/70

⇒3/7

Answer = 3/7

hope this helps you!!

thank you ⭐

Similar questions