Physics, asked by rnegi9521, 10 months ago

If an object of 7 centimetre height is placed at a distance of 12 cm from a convex lens of focal length 8 cm find the position nature and height of the image

Answers

Answered by AdorableMe
67

\Large\underline{\underline{\sf{\color{Red}{GIVEN}}}}

\bullet\ \sf{Size\ of\ the\ object(h_o)=\ }\bold{7\ cm}

\bullet\ \sf{Object\ distance(u)=\ }\bold{-12\ cm}

\bullet\ \sf{Focal\ length(f)=\ }\bold{8 \ cm}

\Large\underline{\underline{\sf{\color{Red}{TO\ FIND}}}}

\longmapsto \sf{The\ }\bold{position,\ nature\ }\sf{and\ }\bold{height\ of\ the\ image(h_i)}\sf{.}

\Large\underline{\underline{\sf{\color{Red}{SOLUTION}}}}

\textsf{We know,}

\boxed{\sf{\dag\ \frac{1}{v}-\frac{1}{u}=\frac{1}{f}   }}

\sf{Putting\ the\ known\ values:-}

\displaystyle{\sf{\dashrightarrow \frac{1}{v}-\frac{1}{-12}=\frac{1}{8}   }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}+\frac{1}{12}=\frac{1}{8}   }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{1}{8}-\frac{1}{12}   }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{3-2}{24}  }}\\\\\displaystyle{\sf{\dashrightarrow \frac{1}{v}=\frac{1}{24}  }}\\\\\boxed{\boxed{\displaystyle{\sf{\dashrightarrow v=24\ cm }}}}

\underline{\bold{Hence,\ the\ image\ is\ formed\ 24\ cm\ on\ the\ right\ side}}\\\underline{\bold{ of\ the\ mirror\ (As\ v\ is\ positive).}}

\rule{190}3

\sf{We\ also\ know\ that,}

\boxed{\displaystyle{\sf{\dag\ \frac{v}{u}=\frac{h_i}{h_o}   }}}

\sf{Putting\ the\ known\ values :-}

\displaystyle{\sf{\dashrightarrow \frac{24}{-12}=\frac{h_i}{7}  }}\\\\\displaystyle{\sf{\dashrightarrow -2=\frac{h_i}{7} }}\\\\\boxed{\boxed{\displaystyle{\sf{\dashrightarrow h_i=-14\ cm}}}}

\underline{\bold{Hence,\ the\ size\ of\ the\ image\ is\ 14\ cm,\ pointing}}\\\underline{\bold{downwards.}}

\rule{190}3

\sf{We\ also\ know\ that,}

\boxed{\sf{\dag\ Magnification(m)=\frac{v}{u} }}

\sf{Putting\ the\ known\ values :-}

\sf{\dashrightarrow m=-2}\\\sf{(From\ above)}

\bold{\underline{Hence,\ the\ image\ is\ real\ and\ inverted\ as\ the}}\\\bold{\underline{magnification\ is\ negative.}}

\mathbb{CONCLUSION :--}

\bullet\ \sf{Image\ is\ formed\ 24\ cm\ behind\ the\ mirror.}

\bullet\ \sf{Position-Beyond\ 2F_2.}

\bullet\ \sf{Nature-Real\ and\ inverted.}

\bullet\ \sf{Height\ of\ the\ image(h_i)=-14\ cm.}

Answered by Vamprixussa
46

Given

SIze of the object = 7 cm

Object distance = -12 cm

Focal length = 8 cm

To find :-

Position, nature and height of the image

FORMULA TO BE USED

\dfrac{1}{f} =\dfrac{1}{v} - \dfrac{1}{u}

\implies \dfrac{1}{8}=\dfrac{1}{v}  - \dfrac{1}{12}

\implies \dfrac{1}{v} = \dfrac{1}{8} - \dfrac{1}{12}

\implies \dfrac{1}{v} = \dfrac{1}{24}

\implies v = 24 \ cm

\boxed{\boxed{\bold{Image \ is \ formed  \ on \ the \ right \ side \ of \ the \ mirror.}}}}}}

                                                     

\dfrac{v}{u} = \dfrac{h_i}{h_o}

\implies \dfrac{24}{-12} = \dfrac{h_i}{7}

\implies h_i = -14 \ cm

\boxed{\boxed{\bold{The \ image \ is \ enlarged}}}}}}

                                                   

m  = \dfrac{v}{u}

= \dfrac{24}{-12}

= -2

\boxed{\boxed{\bold{Image \ is \ real \ and  \ Inverted}}}}}}

                                                   

Similar questions