Physics, asked by mehrajdin1263, 19 days ago

If an object weighing 40kg is 0.5.m away from an object weighing 60kg, what is its gravitational pull?

Answers

Answered by Yuseong
50

Answer:

\sf 640.32 \times 10^{-9} N

Explanation:

As per the provided information in the given question, we have :

  • Mass of first object, m = 40 kg
  • Mass of another object, M = 60 kg
  • Distance between them, d = 0.5 m

We've been asked to calculate its gravitational pull i.e, gravitational force, F.

As we know tha gravitational force is given by,

⠀⠀⠀⠀⠀⠀⠀\underline{\boxed{ \textbf{\textsf{F = }} \textbf{\textsf{G}}\dfrac{\textbf{\textsf{Mm}}}{\textbf{\textsf{d}}^{\textbf{\textsf{2}}}} }}\\

Value of G is \sf 6.67 \times 10^{-11}

On substituting values,

\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 40 \times 60}{(0.5)^2} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 2400}{0.25} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 2400 \times 100 }{25 \times 100} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 100 \times 100 }{25 \times 100} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 10^4 }{25 \times 10^2} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7}\times 24 }{25 \times 10^2} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7 - 2}\times 24 }{25} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\

\\ \\ \longrightarrow\sf{F = \dfrac{16008 \times 10^{-9}}{25} \; N } \\

\\ \\ \longrightarrow \underline{\underline{\textbf{\textsf{F = 640.32}} \times \textbf{\textsf{10}}^{\textbf{\textsf{-9}}}\; \textbf{\textsf{N}} }} \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, its gravitational pull is \sf 640.32 \times 10^{-9} N.

⠀⠀⠀_____________________________⠀⠀⠀

Answered by StarFighter
47

Answer:

Given :-

  • An object weighing 40Kg is 0.5.m away from an object weighing 60 kg.

To Find :-

  • What is it's gravitational pull.

Formula Used :-

\clubsuit Gravitational Force Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{F =\: \dfrac{GMm}{r^2}}}}\: \: \: \bigstar\\

where,

  • F = Gravitational Force
  • G = Gravitational Constant
  • M = Mass of one object
  • m = Mass of other object
  • r = Distance between the two object

Solution :-

Given :

❒ Mass of one object (M) = 40 kg

❒ Mass of other object (m) = 60 kg

❒ Distance between the two object (r) = 0.5 m

❒ Gravitational Constant (G) = \bf 6.67 \times 10^{- 11}\\

According to the question by using the formula we get,

\implies \sf\bold{\purple{F =\: \dfrac{GMm}{r^2}}}\\

\implies \sf F =\: \dfrac{6.67 \times 10^{- 11} \times 40 \times 60}{(0.5)^2}\\

\implies \sf F =\: \dfrac{6.67 \times 10^{- 11} \times 2400}{0.5 \times 0.5}\\

\implies \sf F =\: \dfrac{6.67 \times 10^{- 11} \times (24 \times 100)}{0.25}\\

\implies \sf F =\: \dfrac{(667 \times 100) \times 10^{- 11} \times (24 \times 100)}{(25 \times 100)}\\

\implies \sf F =\: \dfrac{667 \times 10^2 \times 10^{- 11} \times 24 \times 10^2}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{- 11} \times 24 \times 10^2 \times 10^2}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{- 11} \times 24 \times 10^{(2 + 2)}}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{- 11} \times 24 \times 10^4}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{- 11} \times 10^4 \times 24}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{(- 11 + 4)} \times 24}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{- 7} \times 24}{25 \times 10^2}\\

\implies \sf F =\: \dfrac{667 \times 10^{(- 7 - 2)} \times 24}{25}\\

\implies \sf F =\: \dfrac{667 \times 24 \times 10^{- 9}}{25}\\

\implies \sf F =\: \dfrac{16008 \times 10^{- 9}}{25}

\implies \sf\bold{\red{F =\: 640.32 \times 10^{- 9}\: N}}\\

\sf\bold{\underline{\therefore\: The\: gravitational\: pull\: is\: 640.32 \times 10^{- 9}\: N\: .}}\\

Similar questions