Physics, asked by MeIzNotManish, 20 days ago

If an object weighing 40kg is 0.5.m away from an object weighing 60kg, what is its gravitational pull? sumouli unnie ​

Attachments:

Answers

Answered by AthenesticSolar
7

Answer:

Answer:

\sf 640.32 \times 10^{-9}640.32×10

−9

N

Explanation:

As per the provided information in the given question, we have :

Mass of first object, m = 40 kg

Mass of another object, M = 60 kg

Distance between them, d = 0.5 m

We've been asked to calculate its gravitational pull i.e, gravitational force, F.

As we know tha gravitational force is given by,

⠀⠀⠀⠀⠀⠀⠀\begin{gathered}\underline{\boxed{ \textbf{\textsf{F = }} \textbf{\textsf{G}}\dfrac{\textbf{\textsf{Mm}}}{\textbf{\textsf{d}}^{\textbf{\textsf{2}}}} }}\\\end{gathered}

F = G

d

2

Mm

Value of G is \sf 6.67 \times 10^{-11}6.67×10

−11

On substituting values,

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 40 \times 60}{(0.5)^2} \; N } \\ \end{gathered}

⟶F=

(0.5)

2

6.67×10

−11

×40×60

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 2400}{0.25} \; N } \\ \end{gathered}

⟶F=

0.25

6.67×10

−11

×2400

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 2400 \times 100 }{25 \times 100} \; N } \\ \end{gathered}

⟶F=

25×100

667×10

−11

×2400×100

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 100 \times 100 }{25 \times 100} \; N } \\ \end{gathered}

⟶F=

25×100

667×10

−11

×24×100×100

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 10^4 }{25 \times 10^2} \; N } \\ \end{gathered}

⟶F=

25×10

2

667×10

−11

×24×10

4

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7}\times 24 }{25 \times 10^2} \; N } \\ \end{gathered}

⟶F=

25×10

2

667×10

−7

×24

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7 - 2}\times 24 }{25} \; N } \\ \end{gathered}

⟶F=

25

667×10

−7−2

×24

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\ \end{gathered}

⟶F=

25

667×10

−9

×24

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\ \end{gathered}

⟶F=

25

667×10

−9

×24

N

\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{16008 \times 10^{-9}}{25} \; N } \\ \end{gathered}

⟶F=

25

16008×10

−9

N

\begin{gathered}\\ \\ \longrightarrow \underline{\underline{\textbf{\textsf{F = 640.32}} \times \textbf{\textsf{10}}^{\textbf{\textsf{-9}}}\; \textbf{\textsf{N}} }} \\ \end{gathered}

F = 640.32×10

-9

N

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, its gravitational pull is \sf 640.32 \times 10^{-9}640.32×10

−9

N.

⠀⠀⠀_____________________________⠀⠀⠀

u are my sis not friend ✌

Answered by Johnsonmijo
1

Answer:

The gravitational pull will be 6.4032 × 10⁻⁷ N

Explanation:

The mass of the one object, m = 40 Kg

The mass of another object, M = 60 Kg

The distance of separation between these two objects = 0.5 m

Let G be the universal gravitational constant and its value is,

G = 6.67 × 10⁻¹¹ Nm²/kg²

The force of gravitation between these objects can be calculated as,

F = G Mm / d²

F = (6.67 × 10⁻¹¹ × 60 × 40) / 0.5²

F = (16008 × 10⁻¹¹) / 0.25

F = 6.4032 × 10⁻⁷ N

Similar questions