If an object weighing 40kg is 0.5.m away from an object weighing 60kg, what is its gravitational pull? sumouli unnie
Answers
Answer:
Answer:
\sf 640.32 \times 10^{-9}640.32×10
−9
N
Explanation:
As per the provided information in the given question, we have :
Mass of first object, m = 40 kg
Mass of another object, M = 60 kg
Distance between them, d = 0.5 m
We've been asked to calculate its gravitational pull i.e, gravitational force, F.
As we know tha gravitational force is given by,
⠀⠀⠀⠀⠀⠀⠀\begin{gathered}\underline{\boxed{ \textbf{\textsf{F = }} \textbf{\textsf{G}}\dfrac{\textbf{\textsf{Mm}}}{\textbf{\textsf{d}}^{\textbf{\textsf{2}}}} }}\\\end{gathered}
F = G
d
2
Mm
Value of G is \sf 6.67 \times 10^{-11}6.67×10
−11
On substituting values,
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 40 \times 60}{(0.5)^2} \; N } \\ \end{gathered}
⟶F=
(0.5)
2
6.67×10
−11
×40×60
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{6.67 \times 10^{-11}\times 2400}{0.25} \; N } \\ \end{gathered}
⟶F=
0.25
6.67×10
−11
×2400
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 2400 \times 100 }{25 \times 100} \; N } \\ \end{gathered}
⟶F=
25×100
667×10
−11
×2400×100
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 100 \times 100 }{25 \times 100} \; N } \\ \end{gathered}
⟶F=
25×100
667×10
−11
×24×100×100
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-11}\times 24 \times 10^4 }{25 \times 10^2} \; N } \\ \end{gathered}
⟶F=
25×10
2
667×10
−11
×24×10
4
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7}\times 24 }{25 \times 10^2} \; N } \\ \end{gathered}
⟶F=
25×10
2
667×10
−7
×24
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-7 - 2}\times 24 }{25} \; N } \\ \end{gathered}
⟶F=
25
667×10
−7−2
×24
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\ \end{gathered}
⟶F=
25
667×10
−9
×24
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{667 \times 10^{-9}\times 24 }{25} \; N } \\ \end{gathered}
⟶F=
25
667×10
−9
×24
N
\begin{gathered}\\ \\ \longrightarrow\sf{F = \dfrac{16008 \times 10^{-9}}{25} \; N } \\ \end{gathered}
⟶F=
25
16008×10
−9
N
\begin{gathered}\\ \\ \longrightarrow \underline{\underline{\textbf{\textsf{F = 640.32}} \times \textbf{\textsf{10}}^{\textbf{\textsf{-9}}}\; \textbf{\textsf{N}} }} \\ \end{gathered}
⟶
F = 640.32×10
-9
N
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Therefore, its gravitational pull is \sf 640.32 \times 10^{-9}640.32×10
−9
N.
⠀⠀⠀_____________________________⠀⠀⠀
u are my sis not friend ✌
Answer:
The gravitational pull will be 6.4032 × 10⁻⁷ N
Explanation:
The mass of the one object, m = 40 Kg
The mass of another object, M = 60 Kg
The distance of separation between these two objects = 0.5 m
Let G be the universal gravitational constant and its value is,
G = 6.67 × 10⁻¹¹ Nm²/kg²
The force of gravitation between these objects can be calculated as,
F = G Mm / d²
F = (6.67 × 10⁻¹¹ × 60 × 40) / 0.5²
F = (16008 × 10⁻¹¹) / 0.25
F = 6.4032 × 10⁻⁷ N