If αand β aer the Zeros of the quardtric Polynomial f(x) = k x 2 +4x +4 such that α 2 + β 2 = 24, find the values of k
Answers
Answered by
1
Hey
Here is your answer,
Alpha nd beta are the zeros of f(x)=kx²+4x+4 and a²+b²=24
Alpha + beta =-4/k
and alpha x beta=4/k
now, a²+b²=24
or, (a+b)²-2ab=24
or, (-4/k)²-2×4/k=24
or, 16/k²-8/k=24
or, (16-8k)/k²=24
or, 16-8k=24k²
or, 24k²+8k-16=0
or, 8(3k²+k-2)=0
or, 3k²+k-2=0
or, 3k²+3k-2k-2=0
or, 3k(k+1)-2(k+1)=0
or, (k+1)(3k-2)=0
either, k+1=0; or, k=-1
or, 3k-2=0; or, k=2/3
Here is your answer,
Alpha nd beta are the zeros of f(x)=kx²+4x+4 and a²+b²=24
Alpha + beta =-4/k
and alpha x beta=4/k
now, a²+b²=24
or, (a+b)²-2ab=24
or, (-4/k)²-2×4/k=24
or, 16/k²-8/k=24
or, (16-8k)/k²=24
or, 16-8k=24k²
or, 24k²+8k-16=0
or, 8(3k²+k-2)=0
or, 3k²+k-2=0
or, 3k²+3k-2k-2=0
or, 3k(k+1)-2(k+1)=0
or, (k+1)(3k-2)=0
either, k+1=0; or, k=-1
or, 3k-2=0; or, k=2/3
Similar questions