Math, asked by rmkavinnaresh, 5 hours ago

If α and βα and β  are zeroes of the polynomial f(x)=x2−x−kf(x)=x2−x−k , such that α−β=9α−β=9 , the value of ‘k’ will be ​

Answers

Answered by VishnuPriya2801
11

Answer:-

Given:-

α & β are the zeroes of x² - x - k.

By comparing the given quadratic equation to the standard form of a quadratic equation i.e., ax² + bx + c = 0 ;

Let,

  • a = 1
  • b = - 1
  • c = - k

We know that;

Sum of the zeroes = - b/a

So,

⟹ α + β = - ( - 1)/1

⟹ α + β = 1 -- equation (1)

And,

Product of the zeroes = c/a

⟹ αβ = - k/1

⟹ αβ = - k -- equation (2)

It is also given that,

⟹ α - β = 9

Squaring both sides we get,

⟹ (α - β)² = 9²

Using (a - b)² = (a + b)² - 4ab in LHS we get,

⟹ (α + β)² - 4αβ = 81

Substitute the respective values from equations (1) & (2).

⟹ (1)² - 4(- k) = 81

⟹ 1 + 4k = 81

⟹ 4k = 81 - 1

⟹ 4k = 80

⟹ k = 80/4

⟹ k = 20

Answered by diwanamrmznu
7

★GIVEN:

  • α and β  are zeroes of the polynomial 

 \implies \: f(x) = x {}^{2}  - x - k

  • such that α−β=9

find:-

  • value of k

solution:-

  • we know that any polynomial line EQ

 \implies \pink{ax {}^{2}  + bx + c}

  • Given polynomial we see that

 \implies \red{a = 1} \\  \\  \implies \red{b =  - 1} \\  \\  \implies \red{c =  - k}

we know formula of two zerous some

 \implies \star \pink{ \alpha  +  \beta =  \frac{ - b}{ \:  \:  \:  \: a}  } \\

it means

 \implies \:  \alpha  +  \beta  =   \frac{ - ( - 1)}{1}  \\  \\  \implies \pink{ \alpha  +  \beta = 1 }

squaring both sides

 \implies \pink{(\alpha +   \beta ) {}^{2}  = 1 {}^{2} } -  -  - (1) \\

and two zerous multiple

 \implies \red{  \alpha  \beta  = \frac{c}{a}  } \\

it means

   \implies \:  \alpha  \beta  =  \frac{ - k}{1}  \\  \\  \implies \red  {\alpha  \beta  = - k}  -  -  - (2)

given that

 \implies \:  \ \alpha   - \beta  = 9 {}^{}

squaring both sides

 \implies \: ( \alpha  -  \beta) {}^{2}   = 9 {}^{2}

we know that formula of

 \implies \star \pink{( a - b) {}^{2}  = a {}^{2}  + b  {}^{2} -2 ab} \\

 \implies  \alpha {}^{2} +    \beta  {}^{2}  - 2 \alpha  \beta  = 81

now add both sides +2 αβ

 \implies \:  \alpha {}^{2}   +  \beta  {}^{2}   + 2 \alpha  \beta  - 2 \alpha  \beta  = 81 + 2 \alpha  \beta  \\

we know that formula of

 \implies \pink{a {}^{2}  + b {}^{2}  + 2ab = (a + b) {}^{2} } \\

 \implies \: ( \alpha +   \beta ) {}^{2} - 4 \alpha  \beta    = 81 \\

put on EQ 1 and 2 value

 \implies \: 1 - 4( - k) = 81 \\  \\  \implies \: 1 + 4k = 81 \\  \\   \implies \: 4k = 81 - 1 \\  \\  \implies \: k =  \cancel{ \frac{80}{4} } \\  \\  \implies \boxed{ \red {k = 20}}

=====================================

I hope it helps you

Similar questions