If α and β are different complex numbers with | β |= 1, then find | (β-α)/(1- αβ) |.
Answers
Given: α and β are different complex numbers with | β |= 1,
To find : | (β-α)/(1- αβ) |. correction
Solution:
α and β are different complex numbers
α = a + ib
β = c + id
| β |= 1, => c² + d² = 1
|(β-α)/(1- αβ) |.
= | ((c + id) - (a + ib)) / ( 1 - (a + ib)(c + id) ) |
= | ( (c - a) + i(d - b ) ) / ( 1 - (ac - bd + ibc + iad ) ) |
= | ( (c - a) + i(d - b ) ) / ( (1 - ac + bd) + i(bc + ad ) ) |
as | z1 / z2| = |z1| /| z2|
= √ (c - a)² + (d - b)² / √( (1 - ac + bd)² + (bc + ad)²)
= √( c² + a² - 2ac + d² + b² - 2bd) / / √(1 + a²c² + b²d² -2ac + 2bd - 2abcd + b²c² + a²d² - 2abcd)
using c² + d² = 1
= √( 1 + a² + b²- 2ac - 2bd) / / √(1 + a²(c² + d² ) + b²(c² + d² ) -2ac + 2bd )
= √( 1 + a² + b²- 2ac - 2bd) / / √(1 + a² + b² -2ac + 2bd )
Difficult to find exact value
Here is correction in Question
Correction
= | ((c + id) - (a + ib)) / ( 1 - (a - ib)(c + id) ) |
= | ( (c - a) + i(d - b ) ) / ( 1 - (ac + bd - ibc + iad ) ) |
= | ( (c - a) + i(d - b ) ) / ( (1 - ac - bd) + i(bc - ad ) ) |
as | z1 / z2| = |z1| /| z2|
= √ (c - a)² + (d - b)² / √( (1 - ac - bd)² + (bc - ad)²)
= √( c² + a² - 2ac + d² + b² - 2bd) / / √(1 + a²c² + b²d² -2ac - 2bd + 2abcd + b²c² + a²d² - 2abcd)
using c² + d² = 1
= √( 1 + a² + b²- 2ac - 2bd) / / √(1 + a²(c² + d² ) + b²(c² + d² ) -2ac - 2bd )
= √( 1 + a² + b²- 2ac - 2bd) / / √(1 + a² + b² -2ac - 2bd )
= 1
= 1
Learn more:
find the square root of complex number 8-15i - Brainly.in
https://brainly.in/question/1207060
Q. 60 z is a complex number such that z+1/z=2cos3°,then the value ...
https://brainly.in/question/6666657