If α and β are distinct roots of the equation pcos x +qsin x =r, then show that tan (α+β)/2 = q/p
Answers
Answered by
2
a and ß are the roots of
Pcosx + qsinx = r
so,
Pcosa + qsina = r -------;(1)
Pcosß + qsinß = r --------(2)
subtract eqns (1) -(2)
P{ cosa - cosß } + q { sina - sinß } =0
P { cosa - cosß } = q { sinß - sina}
P{ 2sin(a + ß)/2 sin(ß -a)/2 } = q { 2sin(ß -a)/2 .cos( a + ß)/2}
P.sin( a + ß)/2 = q cos(a + ß)/2
tan( a + ß)/2 = q/P
Pcosx + qsinx = r
so,
Pcosa + qsina = r -------;(1)
Pcosß + qsinß = r --------(2)
subtract eqns (1) -(2)
P{ cosa - cosß } + q { sina - sinß } =0
P { cosa - cosß } = q { sinß - sina}
P{ 2sin(a + ß)/2 sin(ß -a)/2 } = q { 2sin(ß -a)/2 .cos( a + ß)/2}
P.sin( a + ß)/2 = q cos(a + ß)/2
tan( a + ß)/2 = q/P
Similar questions