Math, asked by NITESH761, 5 hours ago

if α and β are roots of a quadratic equation, then what is α-β in terms of α+β and αβ.​

Answers

Answered by UserUnknown57
4

Step-by-step explanation:

We know that,

\rm (\alpha - \beta)^2 = \alpha^2 +\beta^2 -2\alpha \beta

and,

\rm (\alpha +\beta)^2 = \alpha^2 +\beta^2 +2\alpha \beta

\rm (\alpha +\beta)^2-2\alpha \beta  = \alpha^2 +\beta^2

\rm (\alpha -\beta)^2  = (\alpha +\beta)^2-2\alpha \beta -2\alpha \beta

\rm \alpha -\beta  =\sqrt{ (\alpha +\beta)^2-4\alpha \beta }

Answered by mathdude500
11

 \green{\large\underline{\sf{Given- }}}

α and β are roots of a quadratic equation.

 \pink{\large\underline{\sf{To\:Find - }}}

α-β in terms of α+β and αβ

 \purple{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\: {( \alpha  -  \beta )}^{2}

\rm \:  =  \:  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta

can be rewritten as

\rm \:  =  \:  { \alpha }^{2}  +  { \beta }^{2} - 2 \alpha  \beta  + 2 \alpha  \beta   + 2 \alpha  \beta

\rm \:  =  \:  ({ \alpha }^{2}  +  { \beta }^{2} - 2 \alpha  \beta)  + 4\alpha  \beta

\rm \:  =  \:  {( \alpha  -  \beta) }^{2}  + 4 \alpha  \beta

\rm\implies \: {( \alpha   - \beta) }^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta

\rm\implies \: \alpha   - \beta \:  = \:   \pm \:  \sqrt{ {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta }

Thus,

\begin{gathered}\begin{gathered}\bf\:  \alpha  -  \beta  = \begin{cases} &\sf{ \sqrt{ {( \alpha  +  \beta )}^{2} - 4 \alpha  \beta  } \:  \: when \:  \alpha  >  \beta  } \\  \\ &\sf{ - \sqrt{ {( \alpha  +  \beta )}^{2} - 4 \alpha  \beta  } \:  \: when \:  \alpha   <   \beta  } \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions