Math, asked by sbbhx058kartikk, 1 day ago

If α and ß are roots of equations 2x ^ 2 - 4x - 3 = 0 . Find the value of α+ ß and αß​

Answers

Answered by steffiaspinno
0

The value of

α+β = -2

αβ = -3/2

Explanation:

Given Equation:

2x ² - 4x - 3 = 0

To find:

α+β and αβ

We know the formula for α and β

FORMULA:

α  =  \frac{-b+\sqrt{b^{2}-4ac } }{2a}

β =  \frac{-b-\sqrt{b^{2}-4ac } }{2a}

To find α+β ,

α+β = \frac{-b+\sqrt{b^{2}-4ac } }{2a} + \frac{-b-\sqrt{b^{2}-4ac } }{2a}

Taking   \frac{1}{2a} as common,

α+β = \frac{1}{2a}( -b+\sqrt{b^{2}-4ac ) + -b-\sqrt{b^{2}-4ac

α+β = \frac{1}{2a}( -b)+(-b)

α+β = \frac{1}{2a}( -2b)

α+β = \frac{-b}{a}

to find  αβ,

αβ = (\frac{-b+\sqrt{b^{2}-4ac } }{2a})  (\frac{-b-\sqrt{b^{2}-4ac } }{2a})

αβ = \frac{b^{2} -({b^{2}-4ac } )}{4a^{2} }  

αβ = \frac{b^{2} -{b^{2}+4ac } }{4a^{2} }  

αβ = \frac{{4ac } }{4a^{2} }  

αβ = \frac{{c } }{a} }  

From the equation,

a = coefficient of x²

b = coefficeint of x

c = constant

a = 2

b = 4

c  = -3

Applying thess values in the formula,

α+β = \frac{-b}{a}

α+β = \frac{-4}{2}

α+β = -2

αβ = \frac{{c } }{a} }  

αβ = \frac{{-3 } }{2} }  

The value of α+ β and αβ is  -2, -3/2

Similar questions