Math, asked by gayugayu570, 1 month ago

if α and β are roots of the equation x^2+6x+c=0 and 3α+2β=-20 then c=

Answers

Answered by mathdude500
4

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} + 6x + c = 0

and

\rm :\longmapsto\:3 \alpha  + 2 \beta   \: =  -  \: 20

Now, it is given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} + 6x + c = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  -  \: \dfrac{6}{1}  =  - 6 -  -  - (1)

As it is given that,

\rm :\longmapsto\:3 \alpha  + 2 \beta  =  -  \: 20

can be rewritten as

\rm :\longmapsto\:2\alpha + \alpha + 2 \beta  = -  20

\rm :\longmapsto\:2(\alpha + \beta ) +  \alpha   =  - 20

\rm :\longmapsto\:2( - 6 ) +  \alpha   =  - 20

\rm :\longmapsto\: - 12 +  \alpha   =  - 20

\rm :\longmapsto\:  \alpha   =  - 20 + 12

\rm \implies\:\boxed{ \tt{ \:  \alpha  \:  =  \:  -  \: 8 \: }} -  -  - (2)

On substituting equation (2) in equation (1), we get

\rm :\longmapsto\: \alpha  +  \beta  =  - 6

\rm :\longmapsto\:  - 8  +  \beta  =  - 6

\rm :\longmapsto\: \beta  =  - 6 + 8

\rm :\longmapsto\: \boxed{ \tt{ \: \beta  = 2 \: }} -  -  - (3)

Also, we know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{c}{1}

\bf\implies \:(2)( - 8) = c

\bf\implies \:c \:  =  \:  -  \: 16

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta    + \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions