Math, asked by borahsangeeta26, 5 months ago

If α and β are solutions of a quadratic equation
ax^2+ bx + c = 0 , then find the
value of 1/α2 + 1/β2

please answer fast!!​

Answers

Answered by Bidikha
3

Given -

 \alpha  \: and \:  \beta  \: are \: solutions \:  \: of \:  \: a  \: \: quadratic \\ equation \: a {x}^{2}  + bx + c = 0

To find -

The \: value \:  \: of \:  \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ { \beta }^{2} }

Solution -

ax {}^{2}  + bx + c = 0

 \alpha  +  \beta  =  \frac{ - b}{a}

And,

 \alpha  \beta  =  \frac{c}{a}

Now,

 =  \frac{1}{ { \alpha }^{2} }  +  \frac{1}{ { \beta }^{2} }

By taking L. C. M we will get -

 =  \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ { \alpha }^{2} { \beta }^{2}  }

 =  \frac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{( \alpha  \beta ) {}^{2} }

Putting the values we will get -

 =  \frac{ (\frac{ - b }{a}) {}^{2}  - 2 \times  \frac{c}{a}  }{( \frac{c}{a}) {}^{2}  }

 =  \frac{ \frac{ {b}^{2} }{ {a}^{2}  } -  \frac{2c}{a}  }{ \frac{ {c}^{2} }{ {a}^{2} } }

 =  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a}  \div  \frac{ {c}^{2} }{ {a}^{2} }

 =  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a}  \times  \frac{ {a}^{2} }{ {c}^{2} }

 =  \frac{a {b}^{2}  - 2 {a}^{2} }{ {a}^{3} }  \times  \frac{ {a}^{2} }{ {c}^{2} }

 =  \frac{a( {b}^{2}  - 2a)}{a}  \times  \frac{1}{ {c}^{2} }

 =  {b}^{2}  - 2a \times  \frac{1}{ {c}^{2} }

 =  \frac{ {b}^{2} - 2a }{ {c}^{2} }

\therefore \: The \: value \: of \:  \frac{1}{ { \alpha }^{2} } +  \frac{1}{ { \beta }^{2} }   \: is \:  \:  \frac{ {b}^{2}  - 2a}{c}

Similar questions