If α and β are the angles in the first quadrant tan α=1/7 sin β=1/√10 then using the formula sin(α β)=sinα cosβ cosα sinβ find the value of α+2β
Answers
Answered by
25
given 0 <= A or B <= 90°. So the trigonometric ratios are all positive,
tan A = 1/7
=> Sec² A = 1 + 1/49 = 50/49 => Cos A = 7/√50
Sin² A = 1 - 49/50 = 1/50 => Sin A = 1/√50
sin B = 1/√10 => Cos² B = 1 - 1/10 = 9/10 => Cos B = 3/√10
Sin (A + B) = Sin A cos B + Cos A Sin B
= 3/√500 + 7/√500 = 10/√500 = 1/√5
Cos² (A+B) = 1 - 1/5 = 4/5 => Cos (A+B) = 2/√5
Sin (A+B + B) = Sin (A+B) Cos B + Cos(A+B) SIn B
= 3/√50 + 2/√50 = 1/√2
A + 2 B = 45°
================================================
You may also find the value of Sin 2B, Cos 2B using their formulas.
then find Sin (A+2B ).
Sin 2B = 6/10 = 3/5 Cos2B = 9/10 - 1/10 = 4/5
So Sin(A+2B) = 1/√50 * 4/5 + 3/5 * 7/√50
= 1/√2
So A + 2B = 45 deg.
tan A = 1/7
=> Sec² A = 1 + 1/49 = 50/49 => Cos A = 7/√50
Sin² A = 1 - 49/50 = 1/50 => Sin A = 1/√50
sin B = 1/√10 => Cos² B = 1 - 1/10 = 9/10 => Cos B = 3/√10
Sin (A + B) = Sin A cos B + Cos A Sin B
= 3/√500 + 7/√500 = 10/√500 = 1/√5
Cos² (A+B) = 1 - 1/5 = 4/5 => Cos (A+B) = 2/√5
Sin (A+B + B) = Sin (A+B) Cos B + Cos(A+B) SIn B
= 3/√50 + 2/√50 = 1/√2
A + 2 B = 45°
================================================
You may also find the value of Sin 2B, Cos 2B using their formulas.
then find Sin (A+2B ).
Sin 2B = 6/10 = 3/5 Cos2B = 9/10 - 1/10 = 4/5
So Sin(A+2B) = 1/√50 * 4/5 + 3/5 * 7/√50
= 1/√2
So A + 2B = 45 deg.
kvnmurty:
click on thanksb utton above pls
Similar questions