Math, asked by sundarmath1987, 1 year ago

if α and β are the roots of 4x^2-9x+16=0 find √α +√β​

Answers

Answered by pintusingh41122
3

if α and β are the roots of 4x^2-9x+16=0 then √α +√β​  = \dfrac{5}{2}

Step-by-step explanation:

Given the polynomial 4\textrm{x}^{2} -9\textem{x}+16

which is similar to the polynomial \textrm{a}\textrm{x}^{2} +\textrm{b}\textrm{x}+\textrm{c}

\textrm{a}=4,\textrm{b}=-9,\textrm{c}=16

Let \alpha ,\beta be the roots of the polynomial

\alpha +\beta =-\dfrac{\textrm{b}}{\textrm{a}} =-\dfrac{-9}{4} =\dfrac{9}{4}

\alpha \beta =\dfrac{\textrm{c}}{\textrm{a}} =\dfrac{16}{4} =4

(\sqrt{\alpha }+\sqrt{\beta })^{2}=\left ( \sqrt{\alpha } \right )^{2}+\left ( \sqrt{\beta } \right )^{2}+2\sqrt{\alpha }\sqrt{\beta }

 \Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}=\left ( \sqrt{\alpha } \right )^{2}+\left ( \sqrt{\beta } \right )^{2}+2\sqrt{\alpha\beta }

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= {\alpha } + {\beta } +2\sqrt{\alpha\beta }

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= \dfrac{9}{4}+ 2\sqrt{4}

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= \dfrac{9}{4}+ 2\times2

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= \dfrac{9}{4}+ 4      

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= \dfrac{9+16}{4}

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })^{2}= \dfrac{25}{4}

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })= \sqrt{\dfrac{25}{4}}

\Rightarrow (\sqrt{\alpha }+\sqrt{\beta })= \dfrac{5}{2}

Similar questions