If α and β are the roots of the equation (a − 2) x^2 − (5 − a) x − 5 = 0. Find a if |α - β| = 2√6.
Answers
Answered by
1
Answer:
So the required answer is √[(25+a²-10a)/(a²+4-4a) +20/(a-2)].
Explanation:
We know that for equation ax²+bx+c=0,
Sum of roots = -b/a
Product of roots = c/a
Now , for given equation (a − 2) x^2 − (5 − a) x − 5 = 0.
roots are α and β.
So, α + β = (5-a)/(a-2). (1)
α.β = -5/(a-2)
On squaring equation (1), we get
(α+β)² = {(5-a)/(a-2)}²
⇔α²+β²+2αβ = (25+a²-10a)/(a²+4-4a).
⇔α²+β²+2.{(-5)/a-2} = (25+a²-10a)/(a²+4-4a)
⇔α²+β²=(25+a²-10a)/(a²+4-4a) - 2.{(-5)/a-2}
Also, (α-β)² = α²+β²-2αβ = (25+a²-10a)/(a²+4-4a) - 2.{(-5)/a-2}- 2.{(-5)/a-2}.
⇔|α-β| = √[(25+a²-10a)/(a²+4-4a) - 2.{(-5)/a-2}- 2.{(-5)/a-2}]
=✓[(25+a²-10a)/(a²+4-4a) - 4.{(-5)/a-2}].
=√[(25+a²-10a)/(a²+4-4a) +20/(a-2)].
Similar questions
Hindi,
2 days ago
English,
2 days ago
Social Sciences,
2 days ago
Math,
4 days ago
English,
8 months ago