Math, asked by Aryan0123, 8 hours ago

If α and β are the roots of the equation ax² + bx + c =0, express the roots of the equation a³x² - ab²x + b²c = 0 in terms of α and β​

Answers

Answered by amansharma264
79

EXPLANATION.

α and β are the roots of the equation.

⇒ ax² + bx + c = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.    

Roots of the equation.

⇒ a³x² - ab²x + b²c = 0.    

As we know that,

Let, γ and δ are the roots of the equation.

⇒ a³x² - ab²x + b²c = 0.

Sum of the zeroes of the quadratic polynomial.

⇒ γ + δ = - b/a.

⇒ γ + δ = - (-ab²)/a³ = ab²/a³.

⇒ γ + δ = (b²/a²) = (-b/a)² = (α + β)².

Products of the zeroes of the quadratic polynomial.

⇒ γδ = c/a.

⇒ γδ = (b²c/a³) = (b²/a²)(c/a).

⇒ γδ = (b/a)²(c/a) = (α + β)².(αβ).

⇒ (γ - δ)² = (γ + δ)² - 4γδ.

⇒ (γ - δ)² = [(α + β)²]² - 4(αβ)(α + β)².

⇒ (γ - δ)² = (α + β)⁴ - 4(αβ)(α + β)².

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (γ + δ) = (α + β)².

⇒ (γ + δ) = α² + β² + 2αβ. - - - - - (2).

Adding equation (1) and (2), we get.

⇒ 2γ = 2α² + 2αβ.

⇒ γ = α² + αβ.

Pu the values of γ = α² + αβ in equation (1), we get.

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (α² + αβ) - δ = (α² - β²).

⇒ (α² + αβ) - (α² - β²) = δ.

⇒ α² + αβ - α² + β² = δ.

⇒ β² + αβ = δ.

Values of γ = α² + αβ.  and  β² + αβ = δ.

Answered by MindLord
33

Step-by-step explanation:

Sol. α + β = -b/a, αβ = c/a

Roots if the equation a3 x3 + abcx + c3 = 0 are

x = -abc ± √(abc)2 – 4a3 c3/2a3

= (-b/a) (c/a) ± √(b/a)2 (c/a)2 – 4(c/a)3 / 2

(α + β) (α β) ± √( α + β)2 (αβ)2 – 4(αβ)3 / 2

= (α β) ((α + β) ± √( α – β)2 / 2

= (α β) ((α + β) ± (α – β)/2 = α2 β, α β2

Let γ and δ be the required roots. Then

γ = α2 β and δ = α β2.

ALTERNATE SOLUTION :

ax2 + bx + c = 0 has roots α and β. (given)

⇒ α + β = -b/a and α β = c/a

Now, a3 x2 + abcx + c3 = 0

Divides the equation by c2, we get

a3/c2 x2 + abcx/c2 + c3/c2 = 0, a(ax/c)2 + b(ax/c) + c = 0

⇒ ax/c = α, β are the roots

⇒ x = c/a α, c/a β are the roots

⇒ x = α β α , α β β are the roots

⇒ x α2 β, α β2 are the roots

ALTERNATE SOLUTION :

Divide the equation by a3, we get

x2 + b/a. c/a. x + (c/a)3 = 0

⇒ x2 – (α + β) (α β)x + (α β)3 = 0

⇒ x2 – α2 βx - α β2 x + (α β)3 = 0

⇒ x (x – α2 β) - α β2 (x – α2 β) = 0

⇒ (x – α2 β) (x - α β2) = 0

⇒ x = α2 β, α β2 which is the required answer

Similar questions