Physics, asked by IIITZNOBITAII, 1 month ago

If α and β are the roots of the equation ax² + bx + c =0, express the roots of the equation a³x² - ab²x + b²c = 0 in terms of α and β

No spam or else reported​

Answers

Answered by Anonymous
380

 \large\underline {\sf  {\pink{ \pink\star {\: GIVEN:  - }}}} \\

 \sf{ \rightarrow \: If  \: a  \: and  \: B are \:  the \:  roots  \: of  \: the  \: equation \: } \\  \sf{   ax  ^{2}  + bx + c =0,}</p><p> \\  \\

 \large\underline {\sf  {\red{ \pink\star {\: TO \: FIND :  - }}}} \\

 \sf{ \rightarrow \: express  \: the  \: roots \:  of \:  the  \: equation  \:} \\  \sf{  {a}^{3} {x}^{2}   - ab ^{2} x + b ^{2} c = 0  \: in  \: terms  \: of  \: }  \\  \sf{a \:  and \:  B \: .}</p><p> \\  \\

 \large\underline {\sf  {\orange{ \pink\star {\:  SOLUTION \: :  - }}}} \\

 \sf\green{   \alpha  \:  and  \beta \:  are  \: the  \: roots  \: of  \: the \:  equation. \: } \\

\sf{ \Rightarrow \:  ax ^{2} + bx + c = 0.} \\  \\

 \sf \blue{As \:  we  \: know \:  that,} \\ \\

 \sf\green{Sum  \: of  \: the \:  zeroes \:  of \:  the \:  quadratic } \\  \sf{ \: polynomial.} \\ </p><p> \sf{   \Rightarrow\alpha  +  \beta  =  \frac{ - b}{a} } \\  \\

 \sf\green{Products \:  of  \: the \:  zeroes \:  of \:  the  \: quadratic  \: } \\\sf\green{ polynomial.} \\  \sf{  \Rightarrow \: \alpha  \beta  =  \frac{c}{a} } \\  \\

 \sf\green{Roots  \: of \:  the  \: equation} \\

\sf{ \Rightarrow \: a ^{3} \:  x ^{2} ab ^{2} x + b^{2} c = 0.} \\ \\ \\

 \sf \blue{As \:  we \:  know \:  that,} \\

\sf\green{Let, \:y \:and\: \delta \:are \:the \:roots\: of \:the \:equation.}\\

\sf{\Rightarrow a ^{3} \:  x ^{2} - ab ^{2} x + b^{2}c = 0.}\\ \\ \\

\sf\green{Sum \:of\: the \:zeroes \:of \:the \:quadratic\: }\\

\sf\green{polynomial.}\\

\sf{\Rightarrow \:y + \delta =  \frac{-b}{a}}\\

\sf{\Rightarrow \:y + \delta=\frac{(-ab^{2})}{a^{3}}  = ab^{2}/a^{3}.}\\

\sf{\Rightarrow \:y +\delta =  =(\: \frac{b^{2}}{a^{2}}\: )=(\: \frac{-b}{a}^{2}\: )= (\: \alpha +\beta \: )^{2}.}\\ \\ \\

\sf\green{Products \:of\: the \:zeroes \:of \:the \:quadratic} \\

\sf\green{polynomial.}\\

\sf{\Rightarrow \: y \delta = \frac{c}{a}}\\

\sf{\Rightarrow \: y \delta =(\frac{b^{2}c}{a^{3}})=(\frac{b^{2}}{a^{2}}) (\frac{c}{a}) }\\

\sf{\Rightarrow \:y \delta =(\: \frac{b}{a}^{2}\: )(\frac{c}{a})= (\: \alpha +\beta \: )^{2}(\: \alpha +\beta \: ) }\\ \\ \\

Answered by Anonymous
31

Answer:

α and β are the roots of the equation.

⇒ ax² + bx + c = 0.  

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.    

Roots of the equation.

⇒ a³x² - ab²x + b²c = 0.    

As we know that,

Let, γ and δ are the roots of the equation.

⇒ a³x² - ab²x + b²c = 0.

Sum of the zeroes of the quadratic polynomial.

⇒ γ + δ = - b/a.

⇒ γ + δ = - (-ab²)/a³ = ab²/a³.

⇒ γ + δ = (b²/a²) = (-b/a)² = (α + β)².

Products of the zeroes of the quadratic polynomial.

⇒ γδ = c/a.

⇒ γδ = (b²c/a³) = (b²/a²)(c/a).

⇒ γδ = (b/a)²(c/a) = (α + β)².(αβ).

⇒ (γ - δ)² = (γ + δ)² - 4γδ.

⇒ (γ - δ)² = [(α + β)²]² - 4(αβ)(α + β)².

⇒ (γ - δ)² = (α + β)⁴ - 4(αβ)(α + β)².

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (γ + δ) = (α + β)².

⇒ (γ + δ) = α² + β² + 2αβ. - - - - - (2).

Adding equation (1) and (2), we get.

⇒ 2γ = 2α² + 2αβ.

⇒ γ = α² + αβ.

Put the values of γ = α² + αβ in equation (1), we get.

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (α² + αβ) - δ = (α² - β²)  

⇒ (α² + αβ) - (α² - β²) = δ.  

⇒ α² + αβ - α² + β² = δ.

⇒ β² + αβ = δ.  

Values of γ = α² + αβ.  and  β² + αβ = δ.  

Explanation:

thanks.

Plz mark as brainliest..

Similar questions