Math, asked by ItsMissReporter, 1 month ago

If α and β are the roots of the equation ax² + bx + c =0, express the roots of the equation a³x² - ab²x + b²c = 0 in terms of α and β.

 \longrightarrow  \sf\red  {Don't \:  spam}
 \longrightarrow \sf\red {Use \:  correct \:  latex}
 \longrightarrow \sf\red {Answer \:  only  \: if  \: you \:  know }

Answers

Answered by Anonymous
46

Given,

α and β are the roots of the equation ax²+bx+c=0.

To find,

the roots of the equation a³x² - ab²x + b²c = 0(in terms of α and β).

Solution,

We know that,

\red\mapsto{\bf{\green{Sum\:of\:zeroes=\alpha  +  \beta  =  \frac{ - b}{a} }}}

\green\mapsto{\bf{\red{Product\:of\:zeroes=\:\alpha  \beta  =  \frac{c}{a}}}}

By dividing the equation by a³, we'll get:-

=> \bf{x^2+ \frac{b}{a} \times \frac{c}{a}\times\: x + (\frac{c}{a})^3= 0}

=> x² - (α+ β)(αβ)x + (αβ)³= 0

=> x²- α²βx - αβ²x + (αβ)³ = 0

=> x(x - α²β) - αβ²(x + α²β)=0

=> (x-α²β) (x-αβ²) = 0

α²β and αβ² are the roots of the equation a³x² - ab²x + b²c = 0 in terms of α and β.

Answered by IIMrReporterII
5

•\huge\bigstar  \tt{\underline{{\red{A}{\pink{n}{\color{blue}{s}{\color{gold}{w}{\color{aqua}{e}{\color{lime}{r}}}}}}}}}\huge\bigstar•

_______________________________________

α and β are the roots of the equation.

⇒ ax² + bx + c = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

Roots of the equation.

⇒ a³x² - ab²x + b²c = 0.

As we know that,

Let, γ and δ are the roots of the equation.

⇒ a³x² - ab²x + b²c = 0.

Sum of the zeroes of the quadratic polynomial.

⇒ γ + δ = - b/a.

⇒ γ + δ = - (-ab²)/a³ = ab²/a³.

⇒ γ + δ = (b²/a²) = (-b/a)² = (α + β)².

Products of the zeroes of the quadratic polynomial.

⇒ γδ = c/a.

⇒ γδ = (b²c/a³) = (b²/a²)(c/a).

⇒ γδ = (b/a)²(c/a) = (α + β)².(αβ).

⇒ (γ - δ)² = (γ + δ)² - 4γδ.

⇒ (γ - δ)² = [(α + β)²]² - 4(αβ)(α + β)².

⇒ (γ - δ)² = (α + β)⁴ - 4(αβ)(α + β)².

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (γ + δ) = (α + β)².

⇒ (γ + δ) = α² + β² + 2αβ. - - - - - (2).

Adding equation (1) and (2), we get.

⇒ 2γ = 2α² + 2αβ.

⇒ γ = α² + αβ.

Put the values of γ = α² + αβ in equation (1), we get.

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (α² + αβ) - δ = (α² - β²)

⇒ (α² + αβ) - (α² - β²) = δ.

⇒ α² + αβ - α² + β² = δ.

⇒ β² + αβ = δ.

Values of γ = α² + αβ. and β² + αβ = δ.

_______________________________________

hope it helps you:)

 \huge \sf \color{red}\longrightarrow\color{black}{MrReporter}

Similar questions