Math, asked by ItzSavageGirlIsha, 16 days ago

If α and β are the roots of the equation ax² + bx + c =0, express the roots of the equation a³x² - ab²x + b²c = 0 in terms of α and β​

Answers

Answered by llPRINCESSSOFIAll
2

Answer:

there are 3 attachments.

hope it will help you

PLEASE MARK ME AS BRAINLIEST PLEASE

have a great day

friends???

Attachments:
Answered by s8a1583aritra1756
3

≡hey Isha di....

≡ hru

≡mine all good:)

≡ here is your answer....

EXPLANATION.

α and β are the roots of the equation.

⇒ ax² + bx + c = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.    

Roots of the equation.

⇒ a³x² - ab²x + b²c = 0.    

As we know that,

Let, γ and δ are the roots of the equation.

⇒ a³x² - ab²x + b²c = 0.

Sum of the zeroes of the quadratic polynomial.

⇒ γ + δ = - b/a.

⇒ γ + δ = - (-ab²)/a³ = ab²/a³.

⇒ γ + δ = (b²/a²) = (-b/a)² = (α + β)².

Products of the zeroes of the quadratic polynomial.

⇒ γδ = c/a.

⇒ γδ = (b²c/a³) = (b²/a²)(c/a).

⇒ γδ = (b/a)²(c/a) = (α + β)².(αβ).

⇒ (γ - δ)² = (γ + δ)² - 4γδ.

⇒ (γ - δ)² = [(α + β)²]² - 4(αβ)(α + β)².

⇒ (γ - δ)² = (α + β)⁴ - 4(αβ)(α + β)².

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (γ + δ) = (α + β)².

⇒ (γ + δ) = α² + β² + 2αβ. - - - - - (2).

Adding equation (1) and (2), we get.

⇒ 2γ = 2α² + 2αβ.

⇒ γ = α² + αβ.

Put the values of γ = α² + αβ in equation (1), we get.

⇒ (γ - δ) = (α² - β²). - - - - - (1).

⇒ (α² + αβ) - δ = (α² - β²).

⇒ (α² + αβ) - (α² - β²) = δ.

⇒ α² + αβ - α² + β² = δ.

⇒ β² + αβ = δ.

Values of γ = α² + αβ.  and  β² + αβ = δ.

✨Hope it helps✨

✨if it then mark me brainlist✨

and drop some thanks

it's your new friend ⇅

                 @ Aritra @

Similar questions