Math, asked by shubham280206, 1 month ago

if α and β are the roots of the equation x^2 + 6x+ lambda =0 and 3α+2β= -20 then lambda =

Answers

Answered by SparklingBoy
37

Given :-

  • α and β are the roots of the equation
  • x²  + 6x + λ =0.

  • 3α + 2β= - 20.

To Find :-

  • The Value of λ.

Main Concept :-

For A Quadratic Equation of the Form

ax² + bx + c =0.

 \purple{ \text{Sum of Zeros} =   \dfrac{ -  \text b}{ \: \:  \text a} }

\purple{ \text{Product of Zeros} =   \dfrac{   \text c}{\text a} }

Solution :-

We Have,

\red{ \large:\longmapsto \pmb{3 \alpha  + 2 \beta  =  -\: 20}} \:  -  -  - (1) \\

Also,

\text{Sum of Zeros} = - 6 \\

 :\longmapsto\alpha +   \beta  =  - 6 \\

 \red{ \large:\longmapsto \pmb{ \alpha =  -\: 6-\beta}} \:  -  -  - (2) \\

Putting (2) in (1) :

:\longmapsto3( - 6 -  \beta ) + 2 \beta  =  - 20 \\

:\longmapsto - 18 - 3 \beta  + 2 \beta  =  - 20 \\

:\longmapsto -  \beta  =  - 20 + 18 \\

:\longmapsto \cancel -  \beta  =   \cancel- 2 \\

\orange{ \Large :\longmapsto  \underline {\boxed{{\pmb{ \beta  = 2}} }}}

Putting Value of β in (2) :

:\longmapsto \alpha  =  - 6 - 2 \\

\orange{ \Large :\longmapsto  \underline {\boxed{{ \pmb{ \beta  =  - 8}} }}}

As,

 \text{Product of Zeros} =   \dfrac{   \lambda}{\text 1} \\

:\longmapsto \alpha  \beta  =  \lambda \\

:\longmapsto \lambda =  - 8 \times 2 \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\pmb{ \lambda =  - 16}} }}}

Answered by Anonymous
79

\underline{\purple{\ddot{\MasterRohith}}}

Given :-

  • If alpha and beta are the roots of tge equation x^2+6x+lambda =0 and 3 alpha +2beta=-20.

To find :-

  • Here we should find the value of lambda.

Explanation :-

  • Here your refer the attachment for more information for the answer
  • Here we get the value of lambda as -16.

Hope it helps u mate .

Thank you .

Learn more from Brainly app .

Attachments:
Similar questions