Math, asked by SohanDutta, 11 months ago

If α and ß are the roots of the quadratic equation 3x^2 - 5x + 4 = 0 , find the value of 1/α + 1/ß - 2αß.

Warning Dont Spam ⚠ ⚠ ⚠
Please, Solve it
25 - points​

Answers

Answered by BrainlyWriter
33

\Large\bold{\underline{\underline{Answer:-}}}

\Large\bold{\boxed{\boxed{-\frac{17} {12} }}}

\rule{200}{4}

\bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}

As we know,

\text{In the equation\ $ax^2+bx+c=0,$ if \ $x\in\{\alpha,\ \beta \},$}\\\\\text{then \ $\alpha+\beta=-\dfrac{b}{a}\quad\&\quad\alpha\beta=\dfrac{c}{a}.$}

So,

a=3\quad;\quad b=-5\quad;\quad c=4\\\\\\\alpha+\beta=-\dfrac{-5}{3}=\dfrac{5}{3}\\\\\\\alpha\beta=\dfrac{4}{3}

Now,

\begin{aligned}&\dfrac{1}{\alpha}+\dfrac{1}{\beta}-2\alpha\beta\\\\\implies\ \ &\dfrac{\alpha+\beta}{\alpha\beta}-2\alpha\beta\\\\\implies\ \ &\dfrac{\left(\dfrac{5}{3}\right)}{\left(\dfrac{4}{3}\right)}-2\cdot\dfrac{4}{3}\\\\\implies\ \ &\dfrac{5}{4}-\dfrac{8}{3}\\\\\implies\ \ &\mathbf{-\dfrac{17}{12}}\end{aligned}

Answered by BrainlyConqueror0901
24

Answer:

{\bold{\therefore \frac{1}{\alpha}+\frac{1}{\beta}-2\alpha \beta=\frac{-17}{12}}}

Step-by-step explanation:

{\bold{\huge{\underline{SOLUTION-}}}}

• In the given question information given about a quadratic eqn and its roots are given.

• We have to find the given value.

 \underline \bold{Given : } \\  \implies  {3x}^{2}  - 5x + 4 = 0 \\  \implies Roots =  \alpha \:  and \:  \beta  \\  \\  \underline \bold{To \: Find : } \\  \implies  \frac{1}{ \alpha  }  +  \frac{1}{ \beta }   -  { 2\alpha  \beta }  = ?

• According to given question :

 \implies a = 3 \\  \implies b =  - 5 \\  \implies c =   4 \\  \\  \bold{first \: zeroes}  \\  \implies \alpha  +  \beta  =  \frac{ - b}{a}  \\  \implies  \alpha  +  \beta  =  \frac{ - ( - 5)}{3}  =  \frac{5}{3}  \\ \\   \bold {second \: zeroes } \\  \implies  \alpha  \beta  =  \frac{c}{a}  \\  \implies \alpha  \beta  =  \frac{4}{3}  \\  \\  \implies  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - 2 \alpha  \beta   \\  \implies  \frac{ \beta  +  \alpha }{ \alpha  \beta }  - 2 \alpha  \beta  \\  \implies  \frac{ \alpha +   \beta }{ \alpha  \beta }  - 2 \alpha  \beta  \\  \implies \frac{ \frac{5}{3} }{ \frac{4}{3} }  - 2 \times  \frac{4}{3}  \\  \implies  \frac{5}{3}  \times  \frac{3}{4}  -  \frac{8}{3}  \\  \implies  \frac{5}{4}  -  \frac{8}{3}  \\  \implies  \frac{15 - 32}{12}  \\   \bold{\implies  \frac{ - 17}{12} } \\  \\   \bold{\therefore  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - 2 \alpha  \beta  =  \frac{ - 17}{12} }

Similar questions