Math, asked by k2s1672004, 11 months ago

If α and β are the roots of the quadratic equation 3x^2 +kx +8 =0 and α:β=2:3, then find the value of k​

Answers

Answered by pansumantarkm
2

Step-by-step explanation:

Step-by-step explanation:

Given quadratic equation is : 3x² + kx + 8 = 0

and \alpha :\beta=2:3

\frac{\alpha}{\beta}=\frac{2}{3}\\=>\alpha=\frac{2\beta }{3} ------------------(i)

Now comparing the given quadratic equation with the: ax² + bx + c = 0

We get,

\alpha+\beta=\frac{-b}{a}\\=>\alpha+\beta=\frac{-k}{3}\:---------------(ii)\\and\:\alpha\beta =\frac{c}{a}=\frac{8}{3}\:--------------(iii)

Now, putting the value of equation (i) into the equation (iii)

We get,

\frac{2\beta}{3}*\beta=\frac{8}{3}\\=>\beta^{2}=\frac{8*3}{2*3}\\=>\beta^{2}=4\\=>\beta=\left \{{{+}\atop {-}}2\right.

putting the value of \beta in the equation (i), we get,

\alpha=\left\{ {{+}\atop {-}}\right.\frac{2*2}{3}=\left \{{{+} \atop {-}} \right.\frac{4}{3}

Case 1:

When \alpha=\frac{4}{3}\:and\:\beta=2,\\

Putting the value of \alpha\:and\:\beta into the equation (ii), We get,

\alpha+\beta=\frac{-k}{3}\\=>\frac{4}{3}+2=\frac{-k}{3}\\=> \frac{10}{3}=\frac{-k}{3}\\=>k=-10

Case 2:

and when , \alpha=\frac{-4}{3}\:and\:\beta=-2

Putting the value of \alpha\:and\:\beta into the equation (ii), We get,

\alpha+\beta=\frac{-k}{3}\\=>\frac{-4}{3}-2=\frac{-k}{3}\\=> \frac{-10}{3}=\frac{-k}{3}\\=>k=10

∴ k = -10 or 10

________________________________

//Hope this will Helped you//

//Please mark it as Brainliest//

Similar questions