Math, asked by sharmagupteshwa, 1 year ago

If α and β are the solutions of the equation a cosθ + b sinθ = c. then show that cos(α-β) = (a2
– b2
) / (a2
+b2)

Answers

Answered by Anonymous
0
ᴡᴇ have,a tan θ + b sec θ = c    .....(1)⇒c − a tan θ = b sec θ  ⇒(c − a tan θ) = b2 sec2θ⇒c2 + a2 tan2θ − 2 ac tan θ = b2(1 + tan2θ)⇒tan2θ(a2−b2) − 2 ac tan θ + (c2−b2) = 0      .....(2)It is given that α and β are the solutions of (1). So, tan α and tan β are the roots of (2). Hence,tan α + tan β = 2aca2−b2and tan α . tan β = (c2−b2)(a2−b2)Now, tan(α+β) = tan α + tan β1 − tan α . tan β = 2aca2−b21−c2−b2a2−b2 = 2aca2−c2
Similar questions