Math, asked by ayushsingh7964, 1 month ago

if α and β are the zeroeof the polynomial f(x) = kx² + 4x + 4 such that α² + β² = 24 find k

Answers

Answered by ITZURADITYAKING
0

Answer:

α,β roots of f(x)=kx2+4x+4

α,β roots of f(x)=kx2+4x+4Given α2+β2=24

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−2

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−20=3k2+3k−2k−2

α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−20=3k2+3k−2k−20=3k(k+

Similar questions