if α and β are the zeroeof the polynomial f(x) = kx² + 4x + 4 such that α² + β² = 24 find k
Answers
Answer:
α,β roots of f(x)=kx2+4x+4
α,β roots of f(x)=kx2+4x+4Given α2+β2=24
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−2
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−20=3k2+3k−2k−2
α,β roots of f(x)=kx2+4x+4Given α2+β2=24We know α+β=a−b=k−4αβ=ac=k4(α+β)2=α2+β2+2αβ(k−4)2=24+2(k4)k242=24+2(k4)16=24k2+8k2=3k2+k0=3k2+k−20=3k2+3k−2k−20=3k(k+