Math, asked by bhataadi2005, 9 months ago

If α and β are the zeroes of a quadratic polynomial x2 + x – 2 then find the value of

(i) 1/ α + 1/ β

(ii) α2 + β

Answers

Answered by aryanjain99999
10

Answer:

Discriminant (d) =

 {b}^{2}  - 4ac \:  =  \:  {1}^{2}  - 4 \times 1 \times ( - 2) \: 1  + 8 \:  = 9

 \alpha  =   \frac{ - b +  \sqrt{d} }{2a}  =  \frac{ - 1 +  \sqrt{9} }{2 \times 1}  =   \frac{ - 1 + 3}{2}  =  \frac{2}{2}  = 1

 \beta  =  \frac{ - b -  \sqrt{d} }{2a}  =   \frac{ - 1 -  \sqrt{9} }{2 \times 1}  =   \frac{ - 1 - 3}{2}  =  \frac{ - 4}{2}  =  - 2

(i)

 \frac{1}{a}  +  \frac{1}{b}  =  \frac{1}{1}  +  \frac{1}{ - 2}  = 1 -  \frac{1}{2}  = 1 + 0.5 = 1.5

(ii)

 {a}^{2}  +  {b}^{2}  =   {1}^{2}  +  { - 2}^{2}  = 1 + 4 = 5

I hope this answer helps you

please mark as brainlliest

and

please follow me

Answered by Anonymous
8

{\underline{\huge{\mathbb{Question:-}}}}

If α and β are the zeroes of a quadratic polynomial x2 + x – 2 then find the value of

(i) 1/ α + 1/ β

(ii) α²+ β²

{\underline{\huge{\mathbb{Solution:-}}}}

If α and β are the zeroes of a quadratic polynomial x²+ x – 2.

x²+x-2=0.....................(i)

•• Compare (i) no. equation with ax²+bx+c = 0.

So,

a = 1

b= 1

c=(-2)

{\red{\boxed{\bold{\alpha+\beta=\frac{-b}{a}=\frac{-1}{1}=-1}}}}

{\red{\boxed{\bold{\alpha×\beta=\frac{c}{a}=\frac{-2}{1}=-2}}}}

(i)\frac{1}{\alpha}+\frac{1}{\beta}

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  =  \frac{ \beta  +  \alpha }{  \alpha  \beta }  \\  =   \frac{ - 1}{ - 2}  \\  =  \frac{1}{2}

(ii)

 { \alpha }^{2}  +  { \beta }^{2}   \\  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  =  {( - 1)}^{2}  - 2 \times  - 2 \\  = 1 + 4 \\  = 5

{\underline{\huge{\mathbb{Answer:-}}}}

(I)\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{2}=0.5

(ii)\alpha^2+\beta^2=5

Similar questions