Math, asked by gauthzz234, 1 month ago

If α and β are the zeroes of p(x) = 16x2 +4x -5, find the value of
1/α + 1/β.

Answers

Answered by Bartaa
1

Answer:

1/α + 1/β = 4/5

Step-by-step explanation:

Given : zeroes of the polynomial 16x²+4x-5 is α (alpha) and β (beta).

Here,  a(coefficient of x²) = 16

          b(coefficient of x) = 4

           c(constant term) = - 5

Sum of zeroes of the polynomial = - (coefficient of x) / (coefficient of x²)

                                           α + β  = - b/a

                                           α + β  = - (4) / 16

                                           α + β  = - 1/4   —————————— (i)  

Product of zeroes of the polynomial = (constant term) / (coefficient of x²)

                                           α × β  =  c/a

                                             αβ    = - (5) / 16

                                             αβ    = - 5/16   —————————— (iI)  

  1/α + 1/β = (α + β) / (αβ)    

                = (-1/4) / ( -5/16)    —————————— from (i) and (ii)

∴  1/α + 1/β = 4/5

Similar questions