If α and β are the zeroes of Q.P f(x) = ax² + bx + c ,
then evaluate :
i)
ii)
Answers
Answered by
2
you can similarly do the second part.
Hope it helps:)
Hope it helps:)
Attachments:
Answered by
1
α and β are the roots of ax²+ bx +c
sum of roots = - b/a
α+ β = - b/ a
aα + aβ = - b
aα + b = - aβ ------------(1).
aβ + b = - aα ------------(2)
use. this in (1)
1/- aβ + 1/- aα = -1/a( 1/α + 1/β)
= -1/a ( α + β)/αβ
=-1/a( -b/a)/(c/a)
= b/ca
again,
β/-aβ + α/-aα
= -1/a - 1/a
= - 2/a
sum of roots = - b/a
α+ β = - b/ a
aα + aβ = - b
aα + b = - aβ ------------(1).
aβ + b = - aα ------------(2)
use. this in (1)
1/- aβ + 1/- aα = -1/a( 1/α + 1/β)
= -1/a ( α + β)/αβ
=-1/a( -b/a)/(c/a)
= b/ca
again,
β/-aβ + α/-aα
= -1/a - 1/a
= - 2/a
Similar questions