Math, asked by neerajajaganathan2, 9 months ago

If α and β are the zeroes of the given polynomial , and α+ β= αβ then the value of p is px2-2x+3p

Answers

Answered by Rohith200422
24

Question:

If α and β are the zeroes of the given polynomial , and α+ β= αβ then the value of p is Px²-2x+3p.

To find:

★ To find the value of p .

Answer:

 The \:  value  \: of  \:  \underline{ \:\underline{ \:  \bold{ \sf \pink{p} } \: is \:  \bf{  \sf \pink{ \frac{1}{6}} } \: }\: }

Given:

★ An equation is given,

 \sf P {x}^{2}  - 2x + 3p = 0

★ And also given that,  \alpha  +  \beta  =  \alpha  \beta

Step-by-step explanation:

 P {x}^{2}  - 2x + 3p = 0

It's of the form, a {x}^{2}  + bx + c = 0

Where, a=1,b=\: -2,c=3p

 \boxed{Sum \: of \: roots =  \frac{ - a}{b} }

 \mapsto \alpha  +  \beta  =  \frac{ - 1}{ - 2}

 \mapsto  \boxed{\alpha  +  \beta  =  \frac{ 1}{ 2} }

 \boxed{Product \: of \: roots =  \frac{ c}{a} }

 \mapsto \alpha  \beta  =  \frac{ 3p}{1}

 \mapsto  \boxed{\alpha  \beta  =   3p}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Given,

 \implies \alpha  +  \beta  =  \alpha  \beta

Now substituting the values,

 \implies  \frac{1}{2}   =  3p

 \implies 6p = 1

 \implies  \boxed{p =  \frac{1}{6} }

 \therefore The \:  value  \: of  \:  \underline{ \:  \bold{p } \: is \:  \bf{  \frac{1}{6} } \: }

Formula used:

 \bigstar Sum \: of \: roots =  \frac{ - a}{b}

 \bigstar Product \: of \: roots =  \frac{ c}{a}

More information:

Formation of quadratic equation

( if the roots α and β are given )

 {x}^{2}  -x ( \alpha  +  \beta ) +  \alpha  \beta  = 0

Answered by rakshitkarwa
2

Answer:

-6 =P

Step-by-step explanation:

The value of p is -6 .

Attachments:
Similar questions