Math, asked by ojastrivedi2505, 9 months ago

If α and β are the zeroes of the polynomial 2x^2 + 3x + 1 then form the polynomial whose zeroes are α+1 and β+1.

Answers

Answered by Anonymous
1

Question:

If α and β are the zeroes of the polynomial 2x^2 + 3x + 1 then form the polynomial whose zeroes are α+1 and β+1.

To find:

\bigstar To \: find \: the \: equation.

Answer:

 The \: equation \: is, \underline{ \: \underline{   \sf \red{\bold{2 {x}^{2}  - x = 0}}} \: }

Given:

★ Quadratic equation,

2 {x}^{2}  + 3x + 1 = 0

 \alpha  + 1 \: and \:  \beta  + 1 \: are \: roots .

Step-by-step explanation:

2 {x}^{2}  + 3x + 1 = 0

It's of the form,

a {x}^{2}  + bx + c = 0

Where a = 2, b = 3, c = 1

Sum \: of \: roots =  \frac{ - b}{a}

 \boxed{( \alpha  +  \beta ) =  \frac{ - 3}{2} }

Product \: of \: roots =  \frac{c}{a}

 \boxed{ \big( \alpha  \beta  \big) =  \frac{1}{2} }

Now,

Sum of roots,

( \alpha  + 1 ) + (  \beta  + 1)

 \implies  (\alpha  +  \beta)  + 2

Now substituting the values,

\implies  \big( \frac{ - 3}{2}  \big) + 2

\implies  \frac{ - 3 + 4}{2}

\implies  \boxed{Sum \: of \: roots =  \frac{ 1}{2} }

Product of roots,

( \alpha  + 1 ) (  \beta  + 1)

\implies  \big( \alpha  \beta  \big) + \big( \alpha  +  \beta  \big) + 1

Now substituting the values,

\implies  \big(  \frac{1}{2}  \big) + \big(  \frac{ - 3}{2}   \big) + 1

\implies  \big(  \frac{ - 2}{2}  \big) + 1

\implies  - 1 + 1

\implies  \boxed{Product \: of \: roots =  0}

The equation is formed by,

  \boxed{{x}^{2}  - (Sum \: of \: roots)x +Product \: of \: roots = 0}

 \implies {x}^{2} -    \big[\big( \alpha  + 1 \big) +  \big( \beta  + 1 \big) \big]x +  \big[\big( \alpha  + 1 \big) \big( \beta  + 1 \big) \big] = 0

  \implies {x}^{2}  -  \frac{1}{2} x + 0 = 0

\implies  {x}^{2}   -  \frac{1}{2} x = 0

Multiplying by 2 on both sides,

\implies  2 \times {x}^{2}   -  \not{ 2} \times \frac{1}{ \not{2}} x = 0

\implies  \boxed{2 {x}^{2}  - x = 0}

\therefore The \: equation \: is,

\underline{   \sf \pink{\bold{2 {x}^{2}  - x = 0}}}

Similar questions