Math, asked by rubakash44, 1 month ago

If α and β are the zeroes of the polynomial 4x² -2x + ( k -4) and α=1/β ,find the value of k.

Answers

Answered by mathdude500
3

Given :-

  • α and β are the zeroes of the polynomial 4x² -2x + ( k -4) and α=1/β

To Find :-

  • Value of k.

Solution :-

We know that,

\sf \: If \:  \alpha  \:and \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then

\boxed{ \bf \: Product \: of \: zeroes =  \: \dfrac{constant \: term}{coefficient \: of \:  {x}^{2}}}

Given that,

 \sf \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {4x}^{2} - 2x + (k - 4)

So,

\rm :\longmapsto\: \alpha  \beta  = \dfrac{k - 4}{4}

But,

\rm :\longmapsto\:  \alpha  = \dfrac{1}{ \beta }

\rm :\implies\:\: \dfrac{1}{ \beta } \times   \beta  = \dfrac{k - 4}{4}

\rm :\longmapsto\:\dfrac{k - 4}{4}  = 1

\rm :\longmapsto\:k - 4 = 4

\rm :\longmapsto\:k  = 4 + 4

\rm :\longmapsto\:k  = 8

Additional Information :-

\sf \: If \:  \alpha  \:and \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then

 \boxed{ \bf \: Sum \: of \: zeroes =  -  \: \dfrac{coefficient \: of \:  {x}}{coefficient \: of \:  {x}^{2}}}

\rm :\longmapsto\: { \alpha }^{2} +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta

\rm :\longmapsto\: { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  +  \beta )}^{3} - 3\alpha  \beta ( \alpha  +  \beta )

\rm :\longmapsto\: {( \alpha  -  \beta )}^{2} =  {( \alpha  +  \beta )}^{2} - 4 \alpha  \beta

Similar questions