Math, asked by sahasra9491, 4 months ago

If α and β are the zeroes of the polynomial ax2 + bx + c, find the value of α2 + β2. (2013)
Solution​

Answers

Answered by mathdude500
3

Given :-

  • α and β are the zeroes of the polynomial ax² + bx + c

To find :-

  • The value of α² + β²

Solution :-

Given that,

  • α and β are the zeroes of the polynomial ax² + bx + c,

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  =  - \dfrac{b}{a}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{c}{a}

Now,

Consider,

\rm :\longmapsto\: { \alpha }^{2} +  { \beta }^{2}

 \sf \:  =  \:  \:  {( \alpha   + \beta )}^{2}  - 2 \alpha  \beta

 \sf \:  =  \:  \:  {\bigg( - \dfrac{b}{a}  \bigg) }^{2}  - 2\dfrac{c}{a}

 \sf \:  =  \:  \: \dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{2c}{a}

 \sf \:  =  \:  \: \dfrac{ {b}^{2} - 2ac }{ {a}^{2}}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{\bf \:  { \alpha }^{2} +  { \beta }^{2}   =  \dfrac{ {b}^{2} - 2ac }{ {a}^{2}}}}

Additional Information :-

Important Identities :-

 \boxed{\bf \:  { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta )}

 \boxed{\bf \:  {( \alpha  -  \beta )}^{2} =  {( \alpha   + \beta )}^{2}   - 4 \alpha  \beta }

Cubic Polynomial :-

 \sf \: If  \:  \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d \: then

 \boxed{\bf \:  \alpha  +  \beta +   \gamma  =  - \dfrac{b}{a}}

 \boxed{\bf \:  \alpha \beta   +  \beta \gamma  +   \gamma \alpha   =   \dfrac{c}{a}}

 \boxed{\bf \:  \alpha \beta\gamma  =  - \dfrac{d}{a}}

Similar questions