Math, asked by Anonymous, 9 months ago

If α and β are the zeroes of the polynomial p(x)=x²+x-2.Find the value of 1/α-1/β[Don't spam and solve it quick please]

Answers

Answered by anindyaadhikari13
4

Answer is given in the attachment.

<marquee>Hope it helps you... please mark this answer as the brainliest and follow me... </marquee>

Attachments:
Answered by Anonymous
3

\sf\huge\blue{\underline{\underline{ Question : }}}

If α and β are the zeroes of the polynomial p(x)=x²+x-2.Find the value of 1/α-1/β

\sf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • α and β are the zeroes of the polynomial p(x) = x² + x - 2.

To find,

  • Value of 1/α-1/β.

Let,

Factories the polynomial p(x) = x² + x - 2

\rm:\implies x^{2} + x - 2 = 0

\rm:\implies x^{2} + 2x - x - 2 = 0

\rm:\implies x(x + 2) - 1(x + 2) = 0

\rm:\implies (x + 2)(x - 1) = 0

\rm:\implies x = - 2  \: or \:  1

Hence, the zeroes are - 2 or 1.

Since, α = - 2 ; β = 1

Now,

\rm:\implies \frac{1}{\alpha} - \frac{1}{\beta}

\rm:\implies -\frac{1}{2} - \frac{1}{1}

\rm:\implies \frac{-1-2}{2}

\rm:\implies \frac{-3}{2}

\underline{\boxed{\bf{\purple{ \therefore Hence,\:value\:of\:\frac{1}{\alpha} - \frac{1}{\beta} = \frac{-3}{2}}}}}\:\orange{\bigstar}

More Information :

\boxed{\begin{minipage}{7 cm} For a Quadratic Polynomial ax^{2} + bx + c = 0\\ \\$:  \implies Sum\:of\:the\:zeroes : \alpha + \beta = -\frac{b}{a} \\ \\ :\implies Product\:of\:the\:zeroes:\alpha\beta= \frac{c}{a} $ \end{minipage}}

___________________________

Similar questions